Suppr超能文献

碳水化合物代谢在啤酒中生长的不同菌株和物种之间存在差异。

Carbohydrate Metabolism Differentiates and Species Growing in Beer.

作者信息

Arnold Manuel J, Ritter Stefan W, Ehrmann Matthias A, Kurniawan Yohanes N, Suzuki Koji, Becker Thomas M, Liebl Wolfgang

机构信息

Chair of Microbiology, Technical University of Munich, 85354 Freising, Germany.

Chair of Brewing and Beverage Technology, Technical University of Munich, 85354 Freising, Germany.

出版信息

Microorganisms. 2024 Oct 10;12(10):2045. doi: 10.3390/microorganisms12102045.

Abstract

Obligate anaerobic beer spoilage bacteria have been a menace to the brewing industry for several decades. Technological advances in the brewing process aimed at suppressing aerobic spoilers gave rise to problems with obligate anaerobes. In previous studies, the metabolic spectrum of and species has been described, but their metabolism in the beer environment remains largely unknown. We used high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GCMS) to further characterize beer spoiled by 30 different strains from six beer-spoiling species of and (, , , , , and ). We detected differences in carbohydrate utilization and the volatile organic compounds (volatilome) produced during beer spoilage by all six species. We were able to show that glycerol, one of the basic components of beer, is the common carbon source used by all strains. It appears that this carbon source allows for anaerobic beer spoilage by and despite the spoilage-preventing intrinsic barriers of beer (iso-α-acids, ethanol, low pH, scarce nutrients); thus, extrinsic countermeasures are key for prevention.

摘要

专性厌氧啤酒腐败细菌几十年来一直是酿造业的一大威胁。酿造过程中旨在抑制需氧腐败菌的技术进步引发了专性厌氧菌的问题。在之前的研究中,已描述了某些物种的代谢谱,但它们在啤酒环境中的代谢情况仍大多未知。我们使用高效阴离子交换色谱-脉冲安培检测法(HPAEC-PAD)和顶空固相微萃取-气相色谱-质谱联用技术(HS-SPME-GCMS),进一步表征了由来自和六个啤酒腐败物种(、、、、和)的30种不同菌株所导致变质的啤酒。我们检测到所有六个物种在啤酒变质过程中碳水化合物利用情况和产生的挥发性有机化合物(挥发物组)存在差异。我们能够证明,啤酒的基本成分之一甘油是所有菌株共同使用的碳源。看来,尽管啤酒存在防止变质的内在屏障(异α-酸、乙醇、低pH值、营养物质稀缺),但这种碳源使得和能够导致啤酒厌氧变质;因此,外部应对措施是预防的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dad/11510336/2e9637cdd591/microorganisms-12-02045-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验