Kitjanon Jiramate, Nisoh Nililla, Phongphanphanee Saree, Chattham Nattaporn, Karttunen Mikko, Wong-Ekkabut Jirasak
Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
Polymers (Basel). 2024 Oct 15;16(20):2901. doi: 10.3390/polym16202901.
Coarse-grained molecular dynamics (CGMD) simulations were employed to investigate the effects of phospholipids on the aggregation of hydrophilic, modified carbon-nanoparticle fillers in -polyisoprene (-PI) composites. The MARTINI force field was applied to model dipalmitoylphosphatidylcholine (DPPC) lipids and hydrophilic modified fullerenes (HMFs). The simulations of DPPC in -PI composites show that the DPPC lipids self-assemble to form a reverse micelle in a rubber matrix. Moreover, HMF molecules readily aggregate into a cluster, in agreement with the previous studies. Interestingly, the mixture of the DPPC and HMF in the rubber matrix shows a cluster of HMF is encapsulated inside the DPPC reverse micelle. The HMF encapsulated micelles disperse well in the rubber matrix, and their sizes are dependent on the lipid concentration. Mechanical and thermal properties of the composites were analyzed by calculating the diffusion coefficients (), bulk modulus (), and glass transition temperatures (). The results suggest that DPPC acts as a plasticizer and enhances the flexibility of the HMF-DPPC rubber composites. These findings provide valuable insights into the design and process of high-performance rubber composites, offering improved mechanical and thermal properties for various applications.
采用粗粒度分子动力学(CGMD)模拟研究磷脂对聚异戊二烯(-PI)复合材料中亲水性、改性碳纳米颗粒填料聚集的影响。使用MARTINI力场对二棕榈酰磷脂酰胆碱(DPPC)脂质和亲水性改性富勒烯(HMFs)进行建模。在-PI复合材料中对DPPC的模拟表明,DPPC脂质在橡胶基质中自组装形成反胶束。此外,HMF分子很容易聚集形成簇,这与之前的研究一致。有趣的是,橡胶基质中DPPC和HMF的混合物显示,HMF簇被包裹在DPPC反胶束内部。HMF包裹的胶束在橡胶基质中分散良好,其尺寸取决于脂质浓度。通过计算扩散系数()、体积模量()和玻璃化转变温度()来分析复合材料的力学和热性能。结果表明,DPPC起到增塑剂的作用,增强了HMF-DPPC橡胶复合材料的柔韧性。这些发现为高性能橡胶复合材料的设计和加工提供了有价值的见解,为各种应用提供了改进的力学和热性能。