Suppr超能文献

GC-MS 及 PCA 分析不同种属脂肪酸图谱

GC-MS and PCA Analysis of Fatty Acid Profile in Various Species.

机构信息

Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland.

Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.

出版信息

Molecules. 2024 Oct 12;29(20):4833. doi: 10.3390/molecules29204833.

Abstract

Natural compounds are important source of desired biological activity which helps to improve nutritional status and brings many health benefits. St. Hill. which belongs to the family is a plant rich in bioactive substances (polyphenols, saponins, alkaloids) with therapeutic potential including hepatic and digestive disorders, arthritis, rheumatism, and other inflammatory diseases, obesity, hypertension, hypercholesterolemia. In terms of phytochemical research . has been the subject of most intensive investigations among species. Therefore, we concentrated on other available varieties and focused on the content of fatty acids of these shrubs. The fatty acid compounds present in sp. samples were analyzed by GC-MS. 27 different fatty acids were identified in the extracts. The results showed that many constituents with significant commercial or medicinal importance were present in high concentrations. The primary component in all samples was α linolenic acid(18:3 Δ9,12,15). Differences of this component concentration were observed between cultivars and extensively analyzed by PCA, one- way ANOVA and Kruskal-Wallis ANOVA. Significant correlations between compound concentrations were reported.

摘要

天然化合物是具有理想生物活性的重要来源,有助于改善营养状况并带来许多健康益处。圣约翰草属于蒺藜科,是一种富含生物活性物质(多酚、皂苷、生物碱)的植物,具有治疗作用,可用于治疗肝脏和消化系统疾病、关节炎、风湿病和其他炎症性疾病、肥胖症、高血压、高胆固醇血症。在植物化学研究方面,圣约翰草是蒺藜属物种中最受关注的对象。因此,我们专注于其他可用的圣约翰草品种,并研究这些灌木的脂肪酸含量。通过 GC-MS 对圣约翰草样品中的脂肪酸化合物进行了分析。在提取物中鉴定出 27 种不同的脂肪酸。结果表明,许多具有重要商业或药用价值的成分以高浓度存在。在所有样品中,主要成分都是α-亚麻酸(18:3 Δ9,12,15)。不同品种之间存在这种成分浓度的差异,通过 PCA、单因素方差分析和 Kruskal-Wallis ANOVA 进行了广泛分析。报告了化合物浓度之间的显著相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e78/11510334/8d600ddcb225/molecules-29-04833-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验