Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA.
Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA.
Molecules. 2024 Oct 18;29(20):4935. doi: 10.3390/molecules29204935.
Recent breakthroughs in the determination of atomic resolution 3-D cryo-electron microscopy structures of membrane proteins present an unprecedented opportunity for drug discovery. Structure-based drug discovery utilizing in silico methods enables the study of dynamic connectivity of stable conformations induced by the drug in achieving its effect. With the ever-expanding computational power, simulations of this type reveal protein dynamics in the nano-, micro-, and even millisecond time scales. In the present study, aiming to characterize the protein dynamics of the 5HT receptor stimulated by ligands (agonist/antagonist), we performed 1 µs MD simulations on 5HT/DOI (agonist), 5HT/GSK215083 (antagonist), and 5HT (APO, no ligand) systems. The crystal structure of 5HT/zotepine (antagonist) (PDB: 6A94) was used to set up the simulation systems in a lipid bilayer environment. We found the monitoring of the ionic lock residue pair (R3.50-E6.30) of 5HT in MD simulations to be a good approximation of the effects of agonists (ionic lock breakage) or antagonists (ionic lock formation) on receptor activation. We further performed analyses of the MD trajectories, including Principal Component Analysis (PCA), hydrogen bond, salt bridge, and hydrophobic interaction network analyses, and correlation between residues to identify key elements of receptor activation. Our results suggest that in order to trigger receptor activation, DOI must interact with 5HT through residues V5.39, G5.42, S5.43, and S5.46 on TM5, inducing significant conformational changes in the backbone angles of G5.42 and S5.43. DOI also interacted with residues W6.48 (toggle switch) and F6.51 on TM6, causing major conformational shifts in the backbone angles of F6.44 and V6.45. These structural changes were transmitted to the intracellular ends of TM5, TM6, and ICL3, resulting in the breaking of the ionic lock and subsequent G protein activation. The studies could be helpful in future design of selective agonists/antagonists for various serotonin receptors (5HT, 5HT, 5HT, 5HT, and 5HT) involved in detrimental disorders, such as addiction and schizophrenia.
最近在确定膜蛋白的原子分辨率三维冷冻电子显微镜结构方面的突破为药物发现带来了前所未有的机遇。利用基于结构的药物发现方法,通过计算机模拟药物诱导的稳定构象的动态连接,来研究药物的作用机制。随着计算能力的不断提高,此类模拟可以揭示蛋白质在纳秒、微秒甚至毫秒时间尺度上的动态。在本研究中,为了研究配体(激动剂/拮抗剂)刺激 5HT 受体的蛋白质动力学,我们对 5HT/DOI(激动剂)、5HT/GSK215083(拮抗剂)和 5HT(APO,无配体)系统进行了 1µsMD 模拟。我们使用 5HT/zotepine(拮抗剂)(PDB:6A94)的晶体结构在脂质双层环境中建立模拟系统。我们发现,在 MD 模拟中监测 5HT 的离子锁残基对(R3.50-E6.30)可以很好地模拟激动剂(离子锁破坏)或拮抗剂(离子锁形成)对受体激活的影响。我们进一步对 MD 轨迹进行了分析,包括主成分分析(PCA)、氢键、盐桥和疏水性相互作用网络分析,以及残基之间的相关性分析,以确定受体激活的关键要素。我们的研究结果表明,为了触发受体激活,DOI 必须通过 TM5 上的 V5.39、G5.42、S5.43 和 S5.46 残基与 5HT 相互作用,导致 G5.42 和 S5.43 的骨架角度发生显著构象变化。DOI 还与 TM6 上的 W6.48(切换开关)和 F6.51 残基相互作用,导致 F6.44 和 V6.45 的骨架角度发生重大构象变化。这些结构变化传递到 TM5、TM6 和 ICL3 的细胞内端,导致离子锁的断裂和随后的 G 蛋白激活。这些研究有助于未来设计针对各种与有害疾病(如成瘾和精神分裂症)相关的 5HT 受体(5HT、5HT、5HT、5HT 和 5HT)的选择性激动剂/拮抗剂。