Suppr超能文献

用于板材壁厚减薄检测的基于低功耗现场可部署叉指换能器的扫描激光多普勒振动计

Low-Power Field-Deployable Interdigital Transducer-Based Scanning Laser Doppler Vibrometer for Wall-Thinning Detection in Plates.

作者信息

Kang To, Han Soonwoo, Yeom Yun-Taek, Lee Ho-Yong

机构信息

Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea.

Department of Smart Mechanical Engineering, Dongyang University, Yeongju 36040, Republic of Korea.

出版信息

Materials (Basel). 2024 Oct 18;17(20):5098. doi: 10.3390/ma17205098.

Abstract

Lamb waves have become a focal point in ultrasonic testing owing to their potential for long-range and inaccessible detection. However, accurately estimating the flaws in plates using Lamb waves remains challenging because of scattering, mode conversion, and dispersion effects. Recent advances in laser ultrasonic wave techniques have introduced innovative visualization methods that exploit the dispersion effect of Lamb waves to visualize defects via, for example, acoustic wavenumber spectroscopy. In this study, we developed an interdigital transducer (IDT)-based scanning laser Doppler vibrometer (SLDV) system without a power amplifier using a low-power IDT fabricated from lead magnesium niobate-lead zirconate titanate single crystals. To validate the proposed low-power IDT-based SLDV, four different defective plates were measured for defects. A comparison between a conventional IDT-based SLDV, a dry-coupled IDT-based SLDV, and the proposed method demonstrated that the latter is highly reliable for measuring thin plate defects.

摘要

由于兰姆波具有远距离检测和对难以接近区域进行检测的潜力,它已成为超声检测的一个焦点。然而,由于散射、模式转换和频散效应,利用兰姆波准确估计板材中的缺陷仍然具有挑战性。激光超声波技术的最新进展引入了创新的可视化方法,这些方法利用兰姆波的频散效应,例如通过声波数光谱法来可视化缺陷。在本研究中,我们开发了一种基于叉指换能器(IDT)的扫描激光多普勒振动计(SLDV)系统,该系统使用由铌镁酸铅-锆钛酸铅单晶制成的低功率IDT,无需功率放大器。为了验证所提出的基于低功率IDT的SLDV,对四块不同的缺陷板材进行了缺陷测量。将传统的基于IDT的SLDV、基于干式耦合IDT的SLDV与所提出的方法进行比较,结果表明,后者在测量薄板缺陷方面具有高度可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b858/11509587/0b313746831d/materials-17-05098-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验