Suppr超能文献

使用机器学习识别LoRa网络中被篡改的射频传输

Identifying Tampered Radio-Frequency Transmissions in LoRa Networks Using Machine Learning.

作者信息

Senol Nurettin Selcuk, Rasheed Amar, Baza Mohamed, Alsabaan Maazen

机构信息

Department of Computer Science, Sam Houston State University, Huntsville, TX 77340, USA.

Department of Computer Science, College of Charleston, Charleston, SC 29424, USA.

出版信息

Sensors (Basel). 2024 Oct 14;24(20):6611. doi: 10.3390/s24206611.

Abstract

Long-range networks, renowned for their long-range, low-power communication capabilities, form the backbone of many Internet of Things systems, enabling efficient and reliable data transmission. However, detecting tampered frequency signals poses a considerable challenge due to the vulnerability of LoRa devices to radio-frequency interference and signal manipulation, which can undermine both data integrity and security. This paper presents an innovative method for identifying tampered radio frequency transmissions by employing five sophisticated anomaly detection algorithms-Local Outlier Factor, Isolation Forest, Variational Autoencoder, traditional Autoencoder, and Principal Component Analysis within the framework of a LoRa-based Internet of Things network structure. The novelty of this work lies in applying image-based tampered frequency techniques with these algorithms, offering a new perspective on securing LoRa transmissions. We generated a dataset of over 26,000 images derived from real-world experiments with both normal and manipulated frequency signals by splitting video recordings of LoRa transmissions into frames to thoroughly assess the performance of each algorithm. Our results demonstrate that Local Outlier Factor achieved the highest accuracy of 97.78%, followed by Variational Autoencoder, traditional Autoencoder and Principal Component Analysis at 97.27%, and Isolation Forest at 84.49%. These findings highlight the effectiveness of these methods in detecting tampered frequencies, underscoring their potential for enhancing the reliability and security of LoRa networks.

摘要

远程网络以其远程、低功耗通信能力而闻名,构成了许多物联网系统的骨干,实现了高效可靠的数据传输。然而,由于LoRa设备容易受到射频干扰和信号操纵,检测被篡改的频率信号面临着相当大的挑战,这可能会破坏数据的完整性和安全性。本文提出了一种创新方法,通过在基于LoRa的物联网网络结构框架内采用五种复杂的异常检测算法——局部离群因子、孤立森林、变分自编码器、传统自编码器和主成分分析,来识别被篡改的射频传输。这项工作的新颖之处在于将基于图像的篡改频率技术与这些算法相结合,为保障LoRa传输提供了新的视角。我们通过将LoRa传输的视频记录拆分为帧,生成了一个包含超过26000张图像的数据集,这些图像来自对正常和被操纵频率信号的实际实验,以全面评估每种算法的性能。我们的结果表明,局部离群因子的准确率最高,为97.78%,其次是变分自编码器、传统自编码器和主成分分析,准确率为97.27%,孤立森林的准确率为84.49%。这些发现突出了这些方法在检测被篡改频率方面的有效性,强调了它们在提高LoRa网络可靠性和安全性方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efd6/11511312/9fa908da5c85/sensors-24-06611-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验