Suppr超能文献

基于卷积递归自动编码器的视频异常检测。

Video Anomaly Detection Based on Convolutional Recurrent AutoEncoder.

机构信息

College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411100, China.

School of Civil Engineering, Southeast University, Nanjing 210096, China.

出版信息

Sensors (Basel). 2022 Jun 20;22(12):4647. doi: 10.3390/s22124647.

Abstract

As an essential task in computer vision, video anomaly detection technology is used in video surveillance, scene understanding, road traffic analysis and other fields. However, the definition of anomaly, scene change and complex background present great challenges for video anomaly detection tasks. The insight that motivates this study is that the reconstruction error for normal samples would be lower since they are closer to the training data, while the anomalies could not be reconstructed well. In this paper, we proposed a Convolutional Recurrent AutoEncoder (CR-AE), which combines an attention-based Convolutional Long-Short-Term Memory (ConvLSTM) network and a Convolutional AutoEncoder. The ConvLSTM network and the Convolutional AutoEncoder could capture the irregularity of the temporal pattern and spatial irregularity, respectively. The attention mechanism was used to obtain the current output characteristics from the hidden state of each Covn-LSTM layer. Then, a convolutional decoder was utilized to reconstruct the input video clip and the testing video clip with higher reconstruction error, which were further judged to be anomalies. The proposed method was tested on two popular benchmarks (UCSD ped2 Dataset and Avenue Dataset), and the experimental results demonstrated that CR-AE achieved 95.6% and 73.1% frame-level AUC on two public datasets, respectively.

摘要

作为计算机视觉中的一项基本任务,视频异常检测技术被应用于视频监控、场景理解、道路交通分析等领域。然而,异常的定义、场景变化和复杂的背景给视频异常检测任务带来了巨大的挑战。促使我们进行这项研究的见解是,由于正常样本更接近训练数据,因此它们的重建误差会更低,而异常样本则无法很好地重建。在本文中,我们提出了一种卷积递归自动编码器(CR-AE),它结合了基于注意力的卷积长短期记忆(ConvLSTM)网络和卷积自动编码器。ConvLSTM 网络和卷积自动编码器可以分别捕获时间模式的不规则性和空间不规则性。注意力机制用于从每个 Covn-LSTM 层的隐藏状态中获取当前输出特征。然后,使用卷积解码器对输入视频片段和测试视频片段进行重构,重构误差较高的被进一步判断为异常。我们在两个流行的基准(UCSD ped2 数据集和 Avenue 数据集)上对所提出的方法进行了测试,实验结果表明,CR-AE 在两个公共数据集上分别实现了 95.6%和 73.1%的帧级 AUC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a71/9230876/865db169758b/sensors-22-04647-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验