Suppr超能文献

基于指数级数的 SIR/SEIR 传染病模型的求解:数值与非数值方法。

Solutions to SIR/SEIR epidemic models with exponential series: Numerical and non numerical approaches.

机构信息

Department of Mathematics, Hacettepe University, 06532 Beytepe, Ankara, Türkiye; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.

出版信息

Comput Biol Med. 2024 Dec;183:109294. doi: 10.1016/j.compbiomed.2024.109294. Epub 2024 Oct 25.

Abstract

This study revisits the mathematical SIR/SEIR epidemic models, aiming to introduce novel exponential-type series solutions. Beyond standard non-dimensionalization, we implement a successful rescaling technique that reduces the parameter count in classical epidemiology. Consequently, solutions for the SIR model are determined solely by the basic reproduction number and initial infected fractions. Similarly, the SEIR model requires only the transmission-to-recovery ratio and initial exposed fractions. We present both numerical and non numerical solutions, alongside elucidating the limitations on the existence of exponential-type series solutions. Our analysis reveals that these solutions are valid under two key conditions: endemic situations and early epidemic stages, where the basic reproduction number is close to one. We graphically illustrate the range of physical parameters guaranteeing the existence of non numerical exponential series solutions. However, for epidemic/pandemic outbreaks with significantly higher reproduction numbers, achieving complete convergence of the exponential series across the entire physical domain becomes impossible. In such cases, we divide the exponential series solution into two zones: from initial time to peak time and from peak time to the final epidemic time. For the first zone, where convergence is slow, we successfully employ Padé approximants to accelerate the convergence of the series. This accelerated solution is then smoothly joined to the second zone solution once the peak time is identified within the first region. The presented non numerical solutions are envisioned to serve as valuable benchmarks for testing and enhancing other numerical approaches used to solve epidemic models and their variants.

摘要

本研究重新审视了数学 SIR/SEIR 传染病模型,旨在引入新颖的指数型级数解。除了标准的无量纲化,我们还实施了一种成功的缩放技术,减少了经典流行病学中参数的数量。因此,SIR 模型的解仅由基本再生数和初始感染分数决定。类似地,SEIR 模型仅需要传播到恢复比和初始暴露分数。我们提出了数值和非数值解,并阐明了存在指数型级数解的限制。我们的分析表明,这些解在两个关键条件下有效:地方性情况和早期传染病阶段,基本再生数接近 1。我们以图形方式说明了保证非数值指数级数解存在的物理参数范围。然而,对于具有显著更高再生数的传染病/大流行爆发,在整个物理域内实现指数级数的完全收敛是不可能的。在这种情况下,我们将指数级数解分为两个区域:从初始时间到峰值时间,以及从峰值时间到最终传染病时间。对于收敛较慢的第一个区域,我们成功地使用 Padé 逼近来加速级数的收敛。一旦在第一个区域内确定了峰值时间,就可以将加速的解平滑地连接到第二个区域的解。所提出的非数值解旨在作为测试和增强用于解决传染病模型及其变体的其他数值方法的有价值的基准。

相似文献

6
An age-structured epidemic model for the demographic transition.一种用于人口转变的年龄结构流行病模型。
J Math Biol. 2018 Nov;77(5):1299-1339. doi: 10.1007/s00285-018-1253-7. Epub 2018 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验