Suppr超能文献

一种用于人口转变的年龄结构流行病模型。

An age-structured epidemic model for the demographic transition.

作者信息

Inaba Hisashi, Saito Ryohei, Bacaër Nicolas

机构信息

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan.

Department of Hygiene, Hokkaido University, Kita 15 Nishi 7, Kita-ku, Sapporo, 060-8638, Japan.

出版信息

J Math Biol. 2018 Nov;77(5):1299-1339. doi: 10.1007/s00285-018-1253-7. Epub 2018 Jul 31.

Abstract

In this paper, we formulate an age-structured epidemic model for the demographic transition in which we assume that the cultural norms leading to lower fertility are transmitted amongst individuals in the same way as infectious diseases. First, we formulate the basic model as an abstract homogeneous Cauchy problem on a Banach space to prove the existence, uniqueness, and well-posedness of solutions. Next based on the normalization arguments, we investigate the existence of nontrivial exponential solutions and then study the linearized stability at the exponential solutions using the idea of asynchronous exponential growth. The relative stability defined in the normalized system and the absolute (orbital) stability in the original system are examined. For the boundary exponential solutions corresponding to infection-free or totally infected status, we formulate the stability condition using reproduction numbers. We show that bi-unstability of boundary exponential solutions is one of conditions which guarantee the existence of coexistent exponential solutions.

摘要

在本文中,我们针对人口转变构建了一个年龄结构流行病模型,其中我们假设导致较低生育率的文化规范在个体之间的传播方式与传染病相同。首先,我们将基本模型表述为巴拿赫空间上的一个抽象齐次柯西问题,以证明解的存在性、唯一性和适定性。接下来,基于归一化论证,我们研究非平凡指数解的存在性,然后利用异步指数增长的思想研究指数解处的线性化稳定性。我们考察了归一化系统中定义的相对稳定性以及原始系统中的绝对(轨道)稳定性。对于对应无感染或完全感染状态的边界指数解,我们利用再生数制定稳定性条件。我们表明边界指数解的双不稳定性是保证共存指数解存在的条件之一。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验