Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Calle Joel Montes Camarena s/n, Mazatlán, Sinaloa 82000, Mexico; Miembro de El Colegio de Sinaloa, Antonio Rosales 435, Culiacán 80000, Sinaloa, Mexico.
Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Calle Joel Montes Camarena s/n, Mazatlán, Sinaloa 82000, Mexico.
Sci Total Environ. 2024 Dec 10;955:176976. doi: 10.1016/j.scitotenv.2024.176976. Epub 2024 Oct 29.
This review provides a critical overview of the sources, incidence, accumulation, effects, and interactions of microplastics (MPs) with other contaminants in the shrimp aquaculture environment, emphasizing this sector's challenges and future implications. A first and novel mass MPs balance model was developed to explore the fate and fluxes of MPs within shrimp farming systems. Two literature searches were conducted: one focused on MPs, crustaceans, and shrimp in aquaculture, and other on the effects of MPs in crustaceans, emphasizing shrimp. A total of 78 and 461 peer-reviewed papers were retrieved, respectively. This review details aspects of MPs in the shrimp farming environment, including water, sediments, food, zooplankton, and shrimp tissues. MPs can act as vectors for contaminants, including biological and chemical substances commonly used in shrimp aquaculture. A primary concern is the interaction between MPs and pathogens; thus MPs can facilitate the transport and retention of disease-causing agents. Key questions involve identifying which pathogen groups are most efficiently transported by MPs and how this may exacerbate disease outbreaks in aquaculture. This suggests that microorganisms can establish on MPs surfaces to disseminate an infection. Therefore, the possibility of disease outbreaks and epidemics is expected to rise as MP abundance increases. The mass balance shows that the primary source of MPs is associated with water during the filled (19.3 %) and water exchange (77.2 %) of shrimp ponds, indicating that MPs in the water input play a critical role in the MP dynamic in the shrimp farming environment. However, this initial mass balance model has several weaknesses, including liming, atmospheric deposition, and natural food, which must be addressed as other MPs suppliers. Macrofauna that incidentally enters shrimp ponds may also constitute a significant part of the MPs inventory. Future research should focus on the impact of polystyrene and polyethylene fibers commonly found in crustacean tissues.
这篇综述批判性地概述了虾养殖环境中微塑料(MPs)与其他污染物的来源、发生率、积累、影响和相互作用,强调了该领域的挑战和未来影响。首次开发了一种新型的 MPs 质量平衡模型,以探索 MPs 在虾养殖系统中的命运和通量。进行了两次文献搜索:一次侧重于 MPs、甲壳类动物和虾在水产养殖中的作用,另一次侧重于 MPs 对甲壳类动物的影响,重点是虾。分别检索到 78 篇和 461 篇同行评议论文。本综述详细介绍了虾养殖环境中 MPs 的各个方面,包括水、沉积物、食物、浮游动物和虾组织。MPs 可以作为污染物的载体,包括虾养殖中常用的生物和化学物质。一个主要关注点是 MPs 与病原体之间的相互作用;因此,MPs 可以促进致病因子的运输和保留。关键问题涉及确定哪些病原体组最有效地被 MPs 运输,以及这如何加剧水产养殖中的疾病爆发。这表明微生物可以在 MPs 表面定居,传播感染。因此,随着 MPs 丰度的增加,预计疾病爆发和流行的可能性将会增加。质量平衡表明,MPs 的主要来源与虾塘充满(19.3%)和换水(77.2%)期间的水有关,这表明水中输入的 MPs 在虾养殖环境中 MPs 动态中起着关键作用。然而,这个初始的质量平衡模型有几个弱点,包括石灰化、大气沉积和天然食物,这些都必须作为其他 MPs 供应商来解决。偶然进入虾塘的大型动物也可能构成 MPs 库存的重要组成部分。未来的研究应侧重于甲壳类动物组织中常见的聚苯乙烯和聚乙烯纤维的影响。