Liu Lixia, Zheng Zhenming, Huang Yaling, Su Hairou, Wu Guibing, Deng Zihao, Li Yan, Xie Guantai, Li Jieyou, Zou Fei, Chen Xuemei
Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
Autophagy. 2025 Mar;21(3):639-663. doi: 10.1080/15548627.2024.2421703. Epub 2024 Nov 11.
Cancer cells compensate with increasing mitochondria-derived vesicles (MDVs) to maintain mitochondrial homeostasis, when canonical MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta)-mediated mitophagy is lacking. MDVs promote the transport of mitochondrial components into extracellular vesicles (EVs) and induce tumor metastasis. Although HSP90 (heat shock protein 90) chaperones hundreds of client proteins and its inhibitors suppress tumors, HSP90 inhibitors-related chemotherapy is associated with unexpected metastasis. Herein, we find that HSP90 inhibitor causes mitochondrial damage but stimulates the low LC3-induced MDVs and the release of MDVs-derived EVs. However, why LC3 decreases and what is the transcriptional regulatory mechanism of MDVs formation under HSP90 inhibition remain unknown. Because TFEB (transcription factor EB) is the most important mitophagy transcription factor, and the HSP90 client HCFC1 (host cell factor C1) regulates transcription, there should be a hidden connection between TFEB, HCFC1 and HSP90 in MDVs formation. Our results support the idea that HSP90 N-terminal inhibition reduces transcription via decreased HSP90AA1-HCFC1 interaction, which prevents HCFC1 from binding to the proximal promoter region. Decreased transcription and consequently reduced LC3, ultimately promoted MDVs formation. Blocking MDVs formation with the microtubule inhibitor nocodazole (NOC) activates the HCFC1--LC3 axis, weakens HSP90 inhibitors-induced MDVs and the release of MDVs-derived EVs, inhibits the growth of tumor cell spheres and primary liver tumors, and reduces the extravasation of cancer cells to secondary metastatic sites. Taken together, these data suggest that combination therapy should be used to reduce the metastatic risk of low -triggered-MDVs formation caused by HSP90 inhibitors.: ACIs: ATP-competitive inhibitors; BaFA1: bafilomycin A1; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; CTD: C-terminal domain; EVs: extracellular vesicles; HCFC1: host cell factor C1; HSP90: heat shock protein 90; ILVs: intralumenal vesicles; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MD: middle domain; MDVs: mitochondria-derived vesicles; MQC: mitochondrial quality control; ΔΨm: mitochondrial membrane potential; MVBs: multivesicular bodies; NB: novobiocin; TEM: transmission electron microscopy; TFEB: transcription factor EB; TFs: transcription factors. NOC: nocodazole; NTD: N-terminal nucleotide binding domain; OCR: oxygen consumption rate; RFP: red fluorescent protein; ROS: reactive oxygen species; STA9090: Ganetespib; VPS35: VPS35 retromer complex component.
当缺乏经典的微管相关蛋白1轻链3β(MAP1LC3B/LC3B)介导的线粒体自噬时,癌细胞通过增加线粒体衍生囊泡(MDV)来维持线粒体稳态。MDV促进线粒体成分向细胞外囊泡(EV)的运输并诱导肿瘤转移。尽管热休克蛋白90(HSP90)可辅助数百种客户蛋白,其抑制剂可抑制肿瘤,但HSP90抑制剂相关化疗却与意外的转移相关。在此,我们发现HSP90抑制剂会导致线粒体损伤,但会刺激低LC3诱导的MDV以及MDV衍生的EV的释放。然而,LC3为何减少以及HSP90抑制下MDV形成的转录调控机制仍不清楚。由于转录因子EB(TFEB)是最重要的线粒体自噬转录因子,且HSP90客户蛋白宿主细胞因子C1(HCFC1)可调节转录,因此在MDV形成过程中,TFEB、HCFC1和HSP90之间应该存在隐藏的联系。我们的结果支持以下观点:HSP90 N端抑制通过减少HSP90AA1 - HCFC1相互作用来降低转录,这会阻止HCFC1与近端启动子区域结合。转录减少进而导致LC3降低,最终促进了MDV的形成。用微管抑制剂诺考达唑(NOC)阻断MDV的形成可激活HCFC1 - LC3轴,减弱HSP90抑制剂诱导的MDV以及MDV衍生的EV的释放,抑制肿瘤细胞球和原发性肝肿瘤的生长,并减少癌细胞向继发性转移部位的外渗。综上所述,这些数据表明应采用联合疗法来降低由HSP90抑制剂引起的低触发MDV形成的转移风险。:ACIs:ATP竞争性抑制剂;BaFA1:巴弗洛霉素A1;CCCP:羰基氰3 - 氯苯腙;ChIP:染色质免疫沉淀;CHX:环己酰亚胺;CTD:C端结构域;EVs:细胞外囊泡;HCFC1:宿主细胞因子C1;HSP90:热休克蛋白90;ILVs:腔内囊泡;MAP1LC3B/LC3B:微管相关蛋白1轻链3β;MD:中间结构域;MDVs:线粒体衍生囊泡;MQC:线粒体质量控制;ΔΨm:线粒体膜电位;MVBs:多泡体;NB:新生霉素;TEM:透射电子显微镜;TFEB:转录因子EB;TFs:转录因子。NOC:诺考达唑;NTD:N端核苷酸结合结构域;OCR:耗氧率;RFP:红色荧光蛋白;ROS:活性氧;STA9090:加纳替尼;VPS35:VPS35逆转录复合物成分