Suppr超能文献

海马-杏仁核网络中新兴的多对一加权映射是记忆形成的基础。

Emerging many-to-one weighted mapping in hippocampus-amygdala network underlies memory formation.

机构信息

Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.

出版信息

Nat Commun. 2024 Oct 26;15(1):9248. doi: 10.1038/s41467-024-53665-9.

Abstract

Memories are crucial for daily life, yet the network-level organizing principles governing neural representations of experiences remain unknown. Employing dual-site in vivo recording in freely behaving male mice, here we show that hippocampal dorsal CA1 (dCA1) and basolateral amygdala (BLA) utilize distinct coding strategies for novel experiences. A small assembly of BLA neurons emerged active during memory acquisition and persisted through consolidation, whereas most dCA1 neurons were engaged in both processes. Machine learning decoding revealed that dCA1 population spikes predicted BLA assembly firing rate, suggesting that most dCA1 neurons concurrently index an episodic event by rapidly establishing weighted communication with a specific BLA assembly - a process we term "many-to-one weighted mapping." We also found that dCA1 reactivations preceded BLA assembly activity preferably during elongated and enlarged dCA1 ripples. Using a closed-loop strategy, we demonstrated that suppressing BLA activity after large dCA1 ripples impaired memory. These findings highlight a many-to-one weighted mapping mechanism underlying both the acquisition and consolidation of new memories.

摘要

记忆对于日常生活至关重要,但支配经验的神经表现的网络级组织原则仍不清楚。本研究采用在自由活动的雄性小鼠中进行的双部位在体记录,结果表明海马背侧 CA1(dCA1)和基底外侧杏仁核(BLA)对新体验采用不同的编码策略。一小部分 BLA 神经元在记忆获取期间活跃,并在巩固过程中持续存在,而大多数 dCA1 神经元则参与了这两个过程。机器学习解码显示,dCA1 群体放电预测 BLA 组装的放电率,这表明大多数 dCA1 神经元通过与特定的 BLA 组装快速建立加权通信来同时标记一个事件 - 我们称之为“多对一加权映射”。我们还发现,dCA1 再激活优先于 BLA 组装活动,特别是在拉长和扩大的 dCA1 涟漪期间。使用闭环策略,我们证明了在大的 dCA1 涟漪后抑制 BLA 活动会损害记忆。这些发现突出了一种多对一加权映射机制,该机制是新记忆的获取和巩固的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ee5/11513146/60404e47c603/41467_2024_53665_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验