Suppr超能文献

煤矸石识别图像与分选图像的高效匹配方法研究

Research on efficient matching method of coal gangue recognition image and sorting image.

作者信息

Ye Zhang, Hongwei Ma, Peng Wang, Wenjian Zhou, Xiangang Cao, Mingzhen Zhang

机构信息

School of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.

Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring, Xi'an, 710054, China.

出版信息

Sci Rep. 2024 Oct 26;14(1):25536. doi: 10.1038/s41598-024-75654-0.

Abstract

When the coal gangue sorting robot sorts coal gangue, the position of the target coal gangue will change due to belt slippage, deviation, and speed fluctuations of the belt conveyor. This will cause the robotic to fail in grasping or miss grasping. We have developed a solution to this problem: the IMSSP-Net two-stage network gangue image fast matching method. This method will reacquire the target gangue position information and improve the robot's grasping precision and efficiency. In the first stage, we use SuperPoint to guarantee the scene adaptability and credibility of feature point extraction. We have enhanced Superpoint's ability to detect feature points further by using the improved Multi-scale Retinex with Color Restoration enhancement algorithm. In the second stage, we introduce SuperGlue for feature matching to improve the robustness of the matching network. We eliminated erroneous feature matching point pairs and improved the accuracy of image matching by adopting the PROSAC algorithm. We conducted image matching comparison experiments under different object distances, scales, rotation angles, and complex conditions. The experimental platform adopts the double-manipulator truss-type coal gangue sorting robot independently developed by the team. The matching precision, recall, and matching time of the method are 98.2%, 98.3%, and 84.6ms, respectively. The method can meet the requirements of efficient and accurate matching between coal gangue recognition images and sorting images.

摘要

当煤矸石分拣机器人分拣煤矸石时,由于带式输送机的皮带打滑、跑偏和速度波动,目标煤矸石的位置会发生变化。这将导致机器人抓取失败或抓空。我们针对此问题开发了一种解决方案:IMSSP-Net两阶段网络煤矸石图像快速匹配方法。该方法将重新获取目标矸石位置信息,提高机器人的抓取精度和效率。在第一阶段,我们使用SuperPoint来保证特征点提取的场景适应性和可信度。通过使用改进的带色彩恢复增强算法的多尺度视网膜算法,我们进一步增强了SuperPoint检测特征点的能力。在第二阶段,我们引入SuperGlue进行特征匹配,以提高匹配网络的鲁棒性。我们采用PROSAC算法消除错误的特征匹配点对,提高图像匹配的准确性。我们在不同物距、尺度、旋转角度和复杂条件下进行了图像匹配对比实验。实验平台采用团队自主研发的双机械手桁架式煤矸石分拣机器人。该方法的匹配精度、召回率和匹配时间分别为98.2%、98.3%和84.6毫秒。该方法能够满足煤矸石识别图像与分拣图像高效、准确匹配的要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0127/11513082/dcb8c8ec6d30/41598_2024_75654_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验