Suppr超能文献

随机效应广义部分计分模型的凸性约束参数化

A convexity-constrained parameterization of the random effects generalized partial credit model.

作者信息

Hessen David J

机构信息

Department of Methodology and Statistics, Utrecht University, Utrecht, The Netherlands.

出版信息

Br J Math Stat Psychol. 2025 May;78(2):401-419. doi: 10.1111/bmsp.12365. Epub 2024 Oct 27.

Abstract

An alternative closed-form expression for the marginal joint probability distribution of item scores under the random effects generalized partial credit model is presented. The closed-form expression involves a cumulant generating function and is therefore subjected to convexity constraints. As a consequence, complicated moment inequalities are taken into account in maximum likelihood estimation of the parameters of the model, so that the estimation solution is always proper. Another important favorable consequence is that the likelihood function has a single local extreme point, the global maximum. Furthermore, attention is paid to expected a posteriori person parameter estimation, generalizations of the model, and testing the goodness-of-fit of the model. Procedures proposed are demonstrated in an illustrative example.

摘要

提出了一种在随机效应广义部分计分模型下项目得分边际联合概率分布的替代闭式表达式。该闭式表达式涉及累积量生成函数,因此受到凸性约束。结果,在模型参数的最大似然估计中考虑了复杂的矩不等式,从而使估计解始终是恰当的。另一个重要的有利结果是似然函数有一个单一的局部极值点,即全局最大值。此外,还关注了期望后验人参数估计、模型的推广以及模型拟合优度的检验。所提出的程序在一个示例中得到了演示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6c/11971617/1f763147da66/BMSP-78-401-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验