Wang Xu, Zhao Chong, Yang Mingyu, Baek Jae-Hoon, Meng Zheng, Sun Bin, Yuan Aihua, Baek Jong-Beom, He Xiao, Jiang Yi, Zhu Meifang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, 201620, P. R. China.
Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
Small. 2025 Jan;21(1):e2407665. doi: 10.1002/smll.202407665. Epub 2024 Oct 28.
Herein, a bioinspired metal-organic framework (MOF) cocrystal produced from the co-assembly of a MOF [Ni(hexaiminobenzene), Ni(HIB)] and p-chloranils (CHLs) is reported. Because of the 2D conjugation nature and the formation of persistent anion radicals, this cocrystal shows an excellent photothermal property, and is further used as an absorber in solar-driven interfacial water evaporation. The solar-driven interfacial water evaporation rate (4.04 kg m h) is among the best compared with those of previously reported photothermal materials. Molecular dynamics simulation results suggested that the rotating of the CHL molecules relative to the MOF planes tuned the pore size to enable the ultra-fast water transporting, and thus ultra-high water transporting rates (1.11 × 10 and 3.21 × 10 HO s channel at 298.2 and 323.0 K, respectively) for layered cocrystal structures, that are much higher than that of aquaporins (≈1.1 × 10 HO s channel at 298.2 K), are observed. The superior solar-driven water evaporation performance is thus attributed to the synergistic effect of the ultra-fast water transporting pores together with the excellent photothermal property of the cocrystal. This research provided a biomimetic strategy of rational design and production of charge transfer cocrystals to modulate their pores and photothermal properties for solar-driven interfacial water evaporation.
本文报道了一种由金属有机框架(MOF)[Ni(六亚氨基苯),Ni(HIB)]与对苯醌(CHLs)共组装制备的仿生金属有机框架共晶体。由于其二维共轭性质和持久阴离子自由基的形成,这种共晶体表现出优异的光热性能,并进一步用作太阳能驱动界面水蒸发的吸收剂。与先前报道的光热材料相比,其太阳能驱动界面水蒸发速率(4.04 kg m⁻² h⁻¹)处于最佳水平。分子动力学模拟结果表明,CHL分子相对于MOF平面的旋转调节了孔径,从而实现了超快的水传输,因此观察到层状共晶体结构具有超高的水传输速率(分别在298.2 K和323.0 K时为1.11×10⁻¹⁰和3.21×10⁻¹⁰ H₂O s⁻¹通道),远高于水通道蛋白的传输速率(在298.2 K时约为1.1×10⁻¹⁰ H₂O s⁻¹通道)。因此,优异的太阳能驱动水蒸发性能归因于超快水传输孔与共晶体优异光热性能的协同效应。本研究提供了一种仿生策略,用于合理设计和制备电荷转移共晶体,以调节其孔隙和光热性能,用于太阳能驱动界面水蒸发。