Sasmal Ranjan, Som Arka, Kumari Pratibha, Nair Resmi V, Show Sushanta, Barge Nisha Sanjay, Pahwa Meenakshi, Das Saha Nilanjana, Rao Sushma, Vasu Sheeba, Agarwal Rachit, Agasti Sarit S
New Chemistry Unit, Chemistry & Physics of Materials Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India.
Department of Bioengineering, Indian Institute of Science, Bengaluru 560012, Karnataka India.
ACS Cent Sci. 2024 Oct 8;10(10):1945-1959. doi: 10.1021/acscentsci.4c01080. eCollection 2024 Oct 23.
Fluorogenic probes that unmask fluorescence signals in response to bioorthogonal reactions are a powerful new addition to biological imaging. They can significantly reduce background fluorescence and minimize nonspecific signals, potentially enabling real-time, high-contrast imaging without the need to wash out excess fluorophores. While diverse classes of highly refined synthetic fluorophores are now readily available, integrating them into a bioorthogonal fluorogenic scheme still requires extensive design efforts and customized structural alterations to optimize quenching mechanisms for each specific fluorophore scaffold. Herein, we present a highly generalizable strategy that can produce an efficient bioorthogonal fluorogenic response from essentially any readily available fluorophore without further structural alterations. We designed this strategy based on the macrocyclic cucurbit[7]uril (CB7) host, where a fluorogenic response is achieved by programming a guest exchange reaction within the macrocyclic cavity. We employed this strategy to rapidly create fluorogenic probes across the visible spectrum from diverse fluorophore scaffolds, which enabled no-wash imaging in live cells and tissues with minimal background signal. Finally, we demonstrated that this strategy can be combined with metabolic labeling for fluorogenic detection of metabolically tagged mycobacteria under no-wash conditions and paired with covalently clickable probes for high-contrast super-resolution and multiplexed imaging in cells and tissues.
能够响应生物正交反应而揭示荧光信号的荧光探针是生物成像领域一项强大的新成员。它们可以显著降低背景荧光并将非特异性信号降至最低,从而有可能实现无需冲洗掉过量荧光团的实时、高对比度成像。虽然现在有各种各样高度精制的合成荧光团可供使用,但将它们整合到生物正交荧光方案中仍需要大量的设计工作和定制的结构改变,以优化每个特定荧光团支架的猝灭机制。在此,我们提出了一种高度通用的策略,该策略可以从基本上任何现成的荧光团产生高效的生物正交荧光响应,而无需进一步的结构改变。我们基于大环葫芦脲[7](CB7)主体设计了这一策略,其中通过在大环腔内设计客体交换反应来实现荧光响应。我们采用这一策略从不同的荧光团支架快速创建了跨越可见光谱的荧光探针,从而能够在活细胞和组织中进行无冲洗成像,背景信号最小。最后,我们证明了该策略可以与代谢标记相结合,在无冲洗条件下对代谢标记的分枝杆菌进行荧光检测,并与可共价点击的探针配对,用于细胞和组织中的高对比度超分辨率和多重成像。