Suppr超能文献

通过时间控制的气溶胶辅助化学气相沉积法制备的FeNi催化剂将生物质衍生的5-羟甲基糠醛电化学转化为2,5-呋喃二甲酸

Electrochemical Conversion of Biomass-Derived 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid by Time-Controlled Aerosol-Assisted Chemical Vapor Deposited FeNi Catalyst.

作者信息

Akilarasan Muthumariappan, Ehsan Muhammad Ali, Tahir Muhammad Nawaz, Shah Mudasir Akbar, Farooq Wasif, Morris Princey Jerome

机构信息

Interdisciplinary Research Centre for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum & Minerals, Dhahran 31261, Kingdom of Saudi Arabia.

Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran 31261, Kingdom of Saudi Arabia.

出版信息

ACS Omega. 2024 Oct 14;9(42):42766-42777. doi: 10.1021/acsomega.4c04274. eCollection 2024 Oct 22.

Abstract

The conversion of 5-hydroxymethylfurfural (HMF) into valuable chemicals, such as 2,5-furandicarboxylic acid (FDCA), is pivotal for sustainable chemical production, offering a renewable pathway to biodegradable plastics and high-value organic compounds. This pioneering study explores the synthesis of FeNi nanostructures via aerosol-assisted chemical vapor deposition (AACVD) for the electrochemical oxidation of HMF to FDCA. By adjusting the deposition time, we developed two distinct nanostructures: FeNi-40, which features nanowires with spherical terminations, and FeNi-80, which features aggregated spherical structures. X-ray diffraction (XRD) confirmed that both nanostructures possess a phase-pure face-centered cubic (FCC) crystal structure. Electrochemical tests conducted using FeNi nanocatalysts on Ni foam revealed that FeNi-40 requires a significantly lower onset potential for HMF oxidation (1.32 V vs RHE) compared to FeNi-80 (1.40 V vs RHE). This difference is attributed to the unique nanowire morphology of FeNi-40, which provides a higher density of active sites and a larger electrochemically active surface area, thereby enhancing the efficiency of the electrochemical process. When tested in an H-type electrolyzer with a Nafion membrane, FeNi-40 demonstrated a remarkable Faradaic efficiency of 96.42% and a high product yield, underscoring the potential of morphology-controlled FeNi nanostructures to enhance the efficiency of sustainable electrochemical processes significantly.

摘要

将5-羟甲基糠醛(HMF)转化为有价值的化学品,如2,5-呋喃二甲酸(FDCA),对于可持续化学品生产至关重要,为生物可降解塑料和高价值有机化合物提供了一条可再生途径。这项开创性研究探索了通过气溶胶辅助化学气相沉积(AACVD)合成FeNi纳米结构,用于将HMF电化学氧化为FDCA。通过调整沉积时间,我们开发了两种不同的纳米结构:FeNi-40,其特征是具有球形末端的纳米线;以及FeNi-80,其特征是聚集的球形结构。X射线衍射(XRD)证实,这两种纳米结构均具有纯相的面心立方(FCC)晶体结构。在泡沫镍上使用FeNi纳米催化剂进行的电化学测试表明,与FeNi-80(相对于可逆氢电极,起始电位为1.40 V)相比,FeNi-40在HMF氧化方面所需的起始电位显著更低(相对于可逆氢电极,起始电位为1.32 V)。这种差异归因于FeNi-40独特的纳米线形态,它提供了更高密度的活性位点和更大的电化学活性表面积,从而提高了电化学过程的效率。当在带有Nafion膜的H型电解槽中进行测试时,FeNi-40表现出96.42%的显著法拉第效率和高产物产率,突出了形态可控的FeNi纳米结构在显著提高可持续电化学过程效率方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfb/11500110/dd6e39f2a762/ao4c04274_0009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验