Akilarasan Muthumariappan, Ehsan Muhammad Ali, Tahir Muhammad Nawaz, Shah Mudasir Akbar, Farooq Wasif, Morris Princey Jerome
Interdisciplinary Research Centre for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum & Minerals, Dhahran 31261, Kingdom of Saudi Arabia.
Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran 31261, Kingdom of Saudi Arabia.
ACS Omega. 2024 Oct 14;9(42):42766-42777. doi: 10.1021/acsomega.4c04274. eCollection 2024 Oct 22.
The conversion of 5-hydroxymethylfurfural (HMF) into valuable chemicals, such as 2,5-furandicarboxylic acid (FDCA), is pivotal for sustainable chemical production, offering a renewable pathway to biodegradable plastics and high-value organic compounds. This pioneering study explores the synthesis of FeNi nanostructures via aerosol-assisted chemical vapor deposition (AACVD) for the electrochemical oxidation of HMF to FDCA. By adjusting the deposition time, we developed two distinct nanostructures: FeNi-40, which features nanowires with spherical terminations, and FeNi-80, which features aggregated spherical structures. X-ray diffraction (XRD) confirmed that both nanostructures possess a phase-pure face-centered cubic (FCC) crystal structure. Electrochemical tests conducted using FeNi nanocatalysts on Ni foam revealed that FeNi-40 requires a significantly lower onset potential for HMF oxidation (1.32 V vs RHE) compared to FeNi-80 (1.40 V vs RHE). This difference is attributed to the unique nanowire morphology of FeNi-40, which provides a higher density of active sites and a larger electrochemically active surface area, thereby enhancing the efficiency of the electrochemical process. When tested in an H-type electrolyzer with a Nafion membrane, FeNi-40 demonstrated a remarkable Faradaic efficiency of 96.42% and a high product yield, underscoring the potential of morphology-controlled FeNi nanostructures to enhance the efficiency of sustainable electrochemical processes significantly.
将5-羟甲基糠醛(HMF)转化为有价值的化学品,如2,5-呋喃二甲酸(FDCA),对于可持续化学品生产至关重要,为生物可降解塑料和高价值有机化合物提供了一条可再生途径。这项开创性研究探索了通过气溶胶辅助化学气相沉积(AACVD)合成FeNi纳米结构,用于将HMF电化学氧化为FDCA。通过调整沉积时间,我们开发了两种不同的纳米结构:FeNi-40,其特征是具有球形末端的纳米线;以及FeNi-80,其特征是聚集的球形结构。X射线衍射(XRD)证实,这两种纳米结构均具有纯相的面心立方(FCC)晶体结构。在泡沫镍上使用FeNi纳米催化剂进行的电化学测试表明,与FeNi-80(相对于可逆氢电极,起始电位为1.40 V)相比,FeNi-40在HMF氧化方面所需的起始电位显著更低(相对于可逆氢电极,起始电位为1.32 V)。这种差异归因于FeNi-40独特的纳米线形态,它提供了更高密度的活性位点和更大的电化学活性表面积,从而提高了电化学过程的效率。当在带有Nafion膜的H型电解槽中进行测试时,FeNi-40表现出96.42%的显著法拉第效率和高产物产率,突出了形态可控的FeNi纳米结构在显著提高可持续电化学过程效率方面的潜力。