Suppr超能文献

具有预算信息披露的上下文博弈

Contextual Bandits with Budgeted Information Reveal.

作者信息

Gan Kyra, Keyvanshokooh Esmaeil, Liu Xueqing, Murphy Susan

机构信息

Cornell Tech.

Texas A&M University.

出版信息

Proc Mach Learn Res. 2024 May;238:3970-3978.

Abstract

Contextual bandit algorithms are commonly used in digital health to recommend personalized treatments. However, to ensure the effectiveness of the treatments, patients are often requested to take actions that have no immediate benefit to them, which we refer to as actions. In practice, clinicians have a limited budget to encourage patients to take these actions and collect additional information. We introduce a novel optimization and learning algorithm to address this problem. This algorithm effectively combines the strengths of two algorithmic approaches in a seamless manner, including 1) an online primal-dual algorithm for deciding the optimal timing to reach out to patients, and 2) a contextual bandit learning algorithm to deliver personalized treatment to the patient. We prove that this algorithm admits a sub-linear regret bound. We illustrate the usefulness of this algorithm on both synthetic and real-world data.

摘要

上下文博弈算法常用于数字健康领域以推荐个性化治疗方案。然而,为确保治疗效果,患者常被要求采取对自身无直接益处的行动,我们将其称为无即时收益行动。在实践中,临床医生鼓励患者采取这些行动并收集额外信息的预算有限。我们引入一种新颖的优化与学习算法来解决此问题。该算法以无缝方式有效结合了两种算法方法的优势,包括:1)一种在线原始对偶算法,用于确定与患者联系的最佳时机;2)一种上下文博弈学习算法,为患者提供个性化治疗。我们证明该算法具有次线性遗憾界。我们在合成数据和真实世界数据上都展示了此算法的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf18/11503011/faf1957670f5/nihms-1985114-f0008.jpg

相似文献

2
A Multiplier Bootstrap Approach to Designing Robust Algorithms for Contextual Bandits.一种用于为情境博弈设计稳健算法的乘数自助法。
IEEE Trans Neural Netw Learn Syst. 2023 Dec;34(12):9887-9899. doi: 10.1109/TNNLS.2022.3161806. Epub 2023 Nov 30.
5
An Optimal Algorithm for the Stochastic Bandits While Knowing the Near-Optimal Mean Reward.已知最优平均回报的随机带臂赌博机的最优算法。
IEEE Trans Neural Netw Learn Syst. 2021 May;32(5):2285-2291. doi: 10.1109/TNNLS.2020.2995920. Epub 2021 May 3.
6
Generalized Contextual Bandits With Latent Features: Algorithms and Applications.具有潜在特征的广义上下文博弈:算法与应用
IEEE Trans Neural Netw Learn Syst. 2023 Aug;34(8):4763-4775. doi: 10.1109/TNNLS.2021.3124603. Epub 2023 Aug 4.
8
Per-Round Knapsack-Constrained Linear Submodular Bandits.每轮背包约束线性次模博弈
Neural Comput. 2016 Dec;28(12):2757-2789. doi: 10.1162/NECO_a_00887. Epub 2016 Sep 14.
9
An Online Minimax Optimal Algorithm for Adversarial Multiarmed Bandit Problem.一种用于对抗性多臂老虎机问题的在线极小极大最优算法。
IEEE Trans Neural Netw Learn Syst. 2018 Nov;29(11):5565-5580. doi: 10.1109/TNNLS.2018.2806006. Epub 2018 Mar 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验