Suppr超能文献

鉴定小细胞肺癌中潜在的唾液酸化相关模式,以预测预后和免疫治疗反应。

Identification of a potential sialylation-related pattern for the prediction of prognosis and immunotherapy response in small cell lung cancer.

机构信息

Harbin Medical University, Harbin, Heilongjiang Province, China.

Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.

出版信息

Medicine (Baltimore). 2024 Oct 11;103(41):e40060. doi: 10.1097/MD.0000000000040060.

Abstract

Our study aimed to establish a novel system for quantifying sialylation patterns and comprehensively analyze their relationship with immune cell infiltration (ICI) characterization, prognosis, and therapeutic sensitivity in small cell lung cancer (SCLC). We conducted a thorough assessment of the sialylation patterns in 100 patients diagnosed with SCLC. Our primary focus was on analyzing the expression levels of 7 prognostic sialylation-related genes. To evaluate and quantify these sialylation patterns, we devised a sialylation score (SS) using principal component analysis algorithms. Prognostic value and therapeutic sensitivities were then evaluated using multiple methods. The GSE176307 was used to verify the predictive ability of SS for immunotherapy. Our study identified 2 distinct clusters based on sialylation patterns. Sialylation cluster B exhibited a lower level of induced ICI therapy and immune-related signaling enrichment, which was associated with a poorer prognosis. Furthermore, there were significant differences in prognosis, response to targeted inhibitors, and immunotherapy between the high and low SS groups. Patients with high SS were characterized by decreased immune cell infiltration, chemokine and immune checkpoint expression, and poorer response to immunotherapy, while the low SS group was more likely to benefit from immunotherapy. This work showed that the evaluation of sialylation subtypes will help to gain insight into the heterogeneity of SCLC. The quantification of sialylation patterns played a non-negligible role in the prediction of ICI characterization, prognosis and individualized therapy strategies.

摘要

我们的研究旨在建立一种新的方法来量化唾液酸化模式,并全面分析其与小细胞肺癌(SCLC)中免疫细胞浸润(ICI)特征、预后和治疗敏感性的关系。我们对 100 名 SCLC 患者的唾液酸化模式进行了全面评估。我们主要关注分析 7 个预后相关的唾液酸化基因的表达水平。为了评估和量化这些唾液酸化模式,我们使用主成分分析算法设计了一个唾液酸化评分(SS)。然后使用多种方法评估预后价值和治疗敏感性。使用 GSE176307 验证 SS 对免疫治疗的预测能力。我们的研究根据唾液酸化模式确定了 2 个不同的聚类。唾液酸化簇 B 表现出较低水平的诱导 ICI 治疗和免疫相关信号富集,与预后较差相关。此外,高和低 SS 组之间在预后、对靶向抑制剂的反应和免疫治疗方面存在显著差异。高 SS 组的特点是免疫细胞浸润、趋化因子和免疫检查点表达减少,对免疫治疗的反应较差,而低 SS 组更有可能受益于免疫治疗。这项工作表明,唾液酸化亚型的评估将有助于深入了解 SCLC 的异质性。唾液酸化模式的量化在预测 ICI 特征、预后和个体化治疗策略方面发挥了不可忽视的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab4/11479454/fb8b4c8a366d/medi-103-e40060-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验