Suppr超能文献

IsRNAcirc:基于粗粒度分子动力学模拟的环状 RNA 三维结构预测。

IsRNAcirc: 3D structure prediction of circular RNAs based on coarse-grained molecular dynamics simulation.

机构信息

College of Life Sciences and Institute of Quantitative Biology, Zhejiang University, Hangzhou, Zhejiang, China.

College of Life Sciences, China Jiliang University, Hangzhou, China.

出版信息

PLoS Comput Biol. 2024 Oct 28;20(10):e1012293. doi: 10.1371/journal.pcbi.1012293. eCollection 2024 Oct.

Abstract

As an emerging class of RNA molecules, circular RNAs play pivotal roles in various biological processes, thereby determining their three-dimensional (3D) structure is crucial for a deep understanding of their biological significances. Similar to linear RNAs, the development of computational methods for circular RNA 3D structure prediction is challenging, especially considering the inherent flexibility and potentially long length of circular RNAs. Here, we introduce an extension of our previous IsRNA2 model, named IsRNAcirc, to enable circular RNA 3D structure predictions through coarse-grained molecular dynamics simulations. The workflow of IsRNAcirc consists of four main steps, including input preparation, end closure, structure prediction, and model refinement. Our results demonstrate that IsRNAcirc can provide reasonable 3D structure predictions for circular RNAs, which significantly reduce the locally irrational elements contained in the initial input. Moreover, for a validation test set comprising 34 circular RNAs, our IsRNAcirc can generate 3D models with better scores than the template-based 3dRNA method. These findings demonstrate that our IsRNAcirc method is a promising tool to explore the structural details along with intricate interactions of circular RNAs.

摘要

作为一类新兴的 RNA 分子,环状 RNA 在各种生物过程中发挥着关键作用,因此确定其三维(3D)结构对于深入了解其生物学意义至关重要。与线性 RNA 类似,开发用于环状 RNA 3D 结构预测的计算方法具有挑战性,特别是考虑到环状 RNA 固有的灵活性和潜在的长长度。在这里,我们介绍了我们之前的 IsRNA2 模型的扩展,名为 IsRNAcirc,通过粗粒度分子动力学模拟来实现环状 RNA 3D 结构预测。IsRNAcirc 的工作流程包括四个主要步骤,包括输入准备、末端封闭、结构预测和模型细化。我们的结果表明,IsRNAcirc 可以为环状 RNA 提供合理的 3D 结构预测,这大大减少了初始输入中包含的局部不合理元素。此外,对于包含 34 个环状 RNA 的验证测试集,我们的 IsRNAcirc 可以生成比基于模板的 3dRNA 方法得分更好的 3D 模型。这些发现表明,我们的 IsRNAcirc 方法是探索环状 RNA 结构细节及其复杂相互作用的有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d0f/11542809/a6288119e37d/pcbi.1012293.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验