Magnetic Resonance Center CERM, University of Florence, Florence, Italy.
Department of Chemistry, University of Florence, Florence, Italy.
Protein Sci. 2024 Nov;33(11):e5197. doi: 10.1002/pro.5197.
Episodic mitochondrial myopathy with or without optic atrophy and reversible leukoencephalopathy (MEOAL) is a rare, orphan autosomal recessive disorder caused by mutations in ferredoxin-2 (FDX2), which is a [2Fe-2S] cluster-binding protein participating in the formation of iron-sulfur clusters in mitochondria. In this biosynthetic pathway, FDX2 works as electron donor to promote the assembly of both [2Fe-2S] and [4Fe-4S] clusters. A recently identified missense mutation of MEOAL is the homozygous mutation c.431C>T (p.P144L) described in six patients from two unrelated families. This mutation alters a highly conserved proline residue located in a loop of FDX2 that is distant from the [2Fe-2S] cluster. How this Pro to Leu substitution damages iron-sulfur cluster biosynthesis is unknown. In this work, we have first compared the structural, dynamic, cluster binding and redox properties of WT and P144L [2Fe-2S] FDX2 to have clues on how the pathogenic P144L mutation can perturb the FDX2 function. Then, we have investigated the interaction of both WT and P144L [2Fe-2S] FDX2 with its physiological electron donor, ferredoxin reductase FDXR, comparing their electron transfer efficiency and protein-protein recognition patterns. Overall, the data indicate that the pathogenic P144L mutation negatively affects the FDXR-dependent electron transfer pathway from NADPH to FDX2, thereby reducing the capacity of FDX2 in assembling both [2Fe-2S] and [4Fe-4S] clusters. Our study also provided solid molecular evidences on the functional role of the C-terminal tail of FDX2 in the electron transfer between FDX2 and FDXR.
周期性线粒体肌病伴或不伴视神经萎缩和可逆性脑白质病变(MEOAL)是一种罕见的、孤儿病常染色体隐性疾病,由铁氧还蛋白-2(FDX2)基因突变引起,FDX2 是一种参与线粒体中铁硫簇形成的[2Fe-2S]簇结合蛋白。在这个生物合成途径中,FDX2 作为电子供体促进[2Fe-2S]和[4Fe-4S]簇的组装。最近发现的 MEOAL 错义突变是两个无关联家族的六名患者的纯合突变 c.431C>T(p.P144L)。该突变改变了 FDX2 中一个高度保守的脯氨酸残基,该残基位于远离[2Fe-2S]簇的环中。这种 Pro 到 Leu 的取代如何破坏铁硫簇生物合成尚不清楚。在这项工作中,我们首先比较了 WT 和 P144L [2Fe-2S] FDX2 的结构、动态、簇结合和氧化还原性质,以了解致病的 P144L 突变如何扰乱 FDX2 的功能。然后,我们研究了 WT 和 P144L [2Fe-2S] FDX2 与生理电子供体 ferredoxin reductase FDXR 的相互作用,比较了它们的电子转移效率和蛋白质-蛋白质识别模式。总体而言,数据表明,致病的 P144L 突变会对 FDXR 依赖的从 NADPH 到 FDX2 的电子转移途径产生负面影响,从而降低 FDX2 组装[2Fe-2S]和[4Fe-4S]簇的能力。我们的研究还为 FDX2 中 C 末端尾巴在 FDX2 和 FDXR 之间的电子转移中的功能作用提供了可靠的分子证据。