Suppr超能文献

使用四种机器学习模型预测与乳腺癌侵袭性相关的 HER2 状态。

Predicting HER2 Status Associated with Breast Cancer Aggressiveness Using Four Machine Learning Models.

机构信息

Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, University of Badji Mokhtar, 23000 Annaba, Algeria.

Environmental Biosurveillance Laboratory, Department of Biology, Faculty of Sciences, University of Badji Mokhtar, 23000 Annaba, Algeria.

出版信息

Asian Pac J Cancer Prev. 2024 Oct 1;25(10):3609-3618. doi: 10.31557/APJCP.2024.25.10.3609.

Abstract

OBJECTIVE

Breast cancer (BC) is a heterogeneous disease with various biological and clinical subtypes. HER2 status (human epidermal growth factor receptor 2) is a crucial biomarker, associated with aggressive tumor behavior and poor prognosis. Advanced algorithmic models can aid in predicting cancer growth and metastasis, serving as valuable clinical tools for classification and treatment. Effective treatment strategies in oncology rely on accurate decision-making and early identification of factors associated with positive outcomes. Breast cancer (BC) presents challenges in understanding its contributing factors and establishing precise diagnostic methods. Our research introduces a novel method utilizing machine learning (ML) techniques to explore the relationship between various clinical and molecular variables focusing on predicting the status of the human epidermal growth factor receptor 2 (HER2), a key aggressiveness biomarker in BC. This objective aligns with leveraging artificial intelligence (AI) to support decision-making and address diagnostic considerations during treatment.

METHODS

Four ML models, namely logistic regression, random forest, LightGBM, and CatBoost, were implemented and evaluated using Python. The dataset was compiled by extracting medical records of BC patients, covering the period from 2018 to 2020. The model's predictive performance was evaluated using accuracy, precision, recall, and F1-score as performance metrics.

RESULT

The models achieved varying accuracies between 86.36 and 95.45%. The logistic regression model achieved an accuracy of 90.90% while the random forest and LightGBM models achieved an accuracy of 86.36%. The CatBoost model outperformed others with a greater accuracy of 95.45%, indicating its superior predictive capabilities for HER2 status. The ML models demonstrated potential in predicting HER2 status, enabling early detection and facilitating personalized treatment strategies.

CONCLUSION

Our findings emphasize the significance of AI and ML techniques in improving BC outcomes and guiding decision-making. Further research is required to explore the broader applications of ML in predicting comprehensive BC outcomes in diverse healthcare settings and among heterogeneous populations.

摘要

目的

乳腺癌(BC)是一种具有多种生物学和临床亚型的异质性疾病。HER2 状态(人表皮生长因子受体 2)是一个关键的生物标志物,与侵袭性肿瘤行为和不良预后相关。先进的算法模型可以辅助预测癌症的生长和转移,是分类和治疗的有价值的临床工具。肿瘤学中的有效治疗策略依赖于准确的决策和对与阳性结果相关因素的早期识别。乳腺癌(BC)在理解其致病因素和建立精确诊断方法方面存在挑战。我们的研究引入了一种利用机器学习(ML)技术的新方法,探索各种临床和分子变量之间的关系,重点预测人表皮生长因子受体 2(HER2)的状态,这是 BC 中一个关键的侵袭性生物标志物。这一目标旨在利用人工智能(AI)来支持决策,并在治疗过程中解决诊断问题。

方法

我们使用 Python 实现并评估了四种 ML 模型,即逻辑回归、随机森林、LightGBM 和 CatBoost。该数据集通过提取 2018 年至 2020 年期间的 BC 患者病历编制而成。我们使用准确性、精确性、召回率和 F1 分数作为性能指标来评估模型的预测性能。

结果

这些模型的准确率在 86.36%至 95.45%之间。逻辑回归模型的准确率为 90.90%,而随机森林和 LightGBM 模型的准确率为 86.36%。CatBoost 模型的表现优于其他模型,准确率为 95.45%,表明其对 HER2 状态具有更好的预测能力。这些 ML 模型在预测 HER2 状态方面具有潜力,能够实现早期检测并促进个性化治疗策略。

结论

我们的研究结果强调了 AI 和 ML 技术在改善 BC 结果和指导决策方面的重要性。需要进一步研究以探索 ML 在不同医疗环境和异质人群中预测全面 BC 结果的更广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da41/11711339/02894c7711e8/APJCP-25-3609-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验