Suppr超能文献

有限元分析和计算流体动力学阐明冷冻象鼻技术后远端支架移植物诱导新入口的机制。

Finite element analysis and computational fluid dynamics to elucidate the mechanism of distal stent graft-induced new entry after frozen elephant trunk technique.

机构信息

Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Aichi, Japan.

Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan.

出版信息

Eur J Cardiothorac Surg. 2024 Nov 4;66(5). doi: 10.1093/ejcts/ezae392.

Abstract

OBJECTIVES

Distal stent graft-induced new entry (dSINE), a new intimal tear at the distal edge of the frozen elephant trunk (FET), is a complication of FET. Preventive measures for dSINE have not yet been established. This study aimed to clarify the mechanisms underlying the development of dSINE by simulating the mechanical environment at the distal edge of the FET.

METHODS

The stress field in the aortic wall after FET deployment was calculated using finite element analysis. Blood flow in the intraluminal space of the aorta and FET models was simulated using computational fluid dynamics. The simulations were conducted with various oversizing rates of FET ranging from 0 to 30% under the condition of FET with elastic recoil.

RESULTS

The elastic recoil of the FET, which caused its distal edge to push against the greater curvature of the aorta, induced a concentration of circumferential stress and increased wall shear stress (WSS) at the aorta. Elastic recoil also created a discontinuous notch on the lesser curvature of the aorta, causing flow stagnation. An increase in the oversizing rate of the FET widened the large circumferential stress area on the greater curvature and increases the maximum stress. Conversely, a decrease in the oversizing rate of the FET increased the WSS and widened the area with high WSS.

CONCLUSIONS

Circumferential stress concentration due to an oversized FET and high WSS due to an undersized FET can cause a dSINE. The selection of smaller-sized FET alone might not prevent dSINE.

摘要

目的

远端支架移植物诱导新入口(dSINE)是冰冻象鼻(FET)远端边缘处的新内膜撕裂,是 FET 的一种并发症。目前尚未确定预防 dSINE 的措施。本研究旨在通过模拟 FET 远端边缘的力学环境,阐明 dSINE 发展的机制。

方法

使用有限元分析计算 FET 放置后主动脉壁内的应力场。使用计算流体动力学模拟主动脉和 FET 模型的管腔内血流。在 FET 具有弹性回弹的情况下,模拟了 FET 的各种过度扩张率(0%至 30%)。

结果

FET 的弹性回弹使其远端边缘推压主动脉的较大曲率,导致主动脉的周向应力集中并增加壁面切应力(WSS)。弹性回弹还在主动脉的小曲率处产生了一个不连续的缺口,导致流动停滞。FET 过度扩张率的增加扩大了大曲率上的大周向应力区域,并增加了最大应力。相反,FET 过度扩张率的降低增加了 WSS 并扩大了高 WSS 区域。

结论

过大的 FET 引起的周向应力集中和过小的 FET 引起的高 WSS 可能导致 dSINE。单独选择较小尺寸的 FET 可能无法预防 dSINE。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ece/11568347/d2db7935d399/ezae392f7.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验