Suppr超能文献

放射学中的人工智能:从前景到实践——有效整合指南

AI in radiology: From promise to practice - A guide to effective integration.

作者信息

Katal Sanaz, York Benjamin, Gholamrezanezhad Ali

机构信息

Department of Medical Imaging, St. Vincent's Hospital Melbourne, 41 Victoria Parade, Fitzroy, VIC 3065, USA.

Department of Radiology, Los Angeles General Medical Center, 1200 N State Street, Los Angeles, CA 90033, USA.

出版信息

Eur J Radiol. 2024 Dec;181:111798. doi: 10.1016/j.ejrad.2024.111798. Epub 2024 Oct 20.

Abstract

While Artificial Intelligence (AI) has the potential to transform the field of diagnostic radiology, important obstacles still inhibit its integration into clinical environments. Foremost among them is the inability to integrate clinical information and prior and concurrent imaging examinations, which can lead to diagnostic errors that could irreversibly alter patient care. For AI to succeed in modern clinical practice, model training and algorithm development need to account for relevant background information that may influence the presentation of the patient in question. While AI is often remarkably accurate in distinguishing binary outcomes-hemorrhage vs. no hemorrhage; fracture vs. no fracture-the narrow scope of current training datasets prevents AI from examining the entire clinical context of the image in question. In this article, we provide an overview of the ways in which failure to account for clinical data and prior imaging can adversely affect AI interpretation of imaging studies. We then showcase how emerging techniques such as multimodal fusion and combined neural networks can take advantage of both clinical and imaging data, as well as how development strategies like domain adaptation can ensure greater generalizability of AI algorithms across diverse and dynamic clinical environments.

摘要

虽然人工智能(AI)有潜力变革诊断放射学领域,但仍有一些重要障碍阻碍其融入临床环境。其中最主要的是无法整合临床信息以及之前和同时期的影像检查,这可能导致诊断错误,进而不可逆转地改变患者的治疗。为使人工智能在现代临床实践中取得成功,模型训练和算法开发需要考虑可能影响相关患者表现的背景信息。虽然人工智能在区分二元结果(出血与无出血;骨折与无骨折)方面通常非常准确,但当前训练数据集的范围狭窄,阻碍了人工智能对相关图像的整个临床背景进行检查。在本文中,我们概述了不考虑临床数据和先前影像会如何对人工智能对影像研究的解读产生不利影响。然后,我们展示了多模态融合和组合神经网络等新兴技术如何利用临床和影像数据,以及领域适应等开发策略如何确保人工智能算法在多样且动态的临床环境中具有更强的通用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验