Independent researcher, Tehran, Iran.
Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114.
AJR Am J Roentgenol. 2024 Oct;223(4):e2431493. doi: 10.2214/AJR.24.31493. Epub 2024 Jul 24.
Interpretive artificial intelligence (AI) tools are poised to change the future of radiology. However, certain pitfalls may pose particular challenges for optimal AI interpretative performance. These include anatomic variants, age-related changes, postoperative changes, medical devices, image artifacts, lack of integration of prior and concurrent imaging examinations and clinical information, and the satisfaction-of-search effect. Model training and development should account for such pitfalls to minimize errors and optimize interpretation accuracy. More broadly, AI algorithms should be exposed to diverse and complex training datasets to yield a holistic interpretation that considers all relevant information beyond the individual examination. Successful clinical deployment of AI tools will require that radiologist end users recognize these pitfalls and other limitations of the available models. Furthermore, developers should incorporate explainable AI techniques (e.g., heat maps) into their tools, to improve radiologists' understanding of model outputs and to enable radiologists to provide feedback for guiding continuous learning and iterative refinement. In this article, we provide an overview of common pitfalls that radiologists may encounter when using interpretive AI products in daily practice. We present how such pitfalls lead to AI errors and offer potential strategies that AI developers may use for their mitigation.
解释性人工智能 (AI) 工具有望改变放射学的未来。然而,某些陷阱可能会对 AI 解释性能的优化构成特殊挑战。这些陷阱包括解剖变异、与年龄相关的变化、术后变化、医疗设备、图像伪影、前后影像学检查和临床信息缺乏整合,以及搜索满足效应。模型训练和开发应考虑到这些陷阱,以最大限度地减少错误并优化解释准确性。更广泛地说,AI 算法应该接触到多样化和复杂的训练数据集,以产生整体解释,考虑到除了单个检查之外的所有相关信息。成功地将 AI 工具临床应用需要放射科终端用户认识到这些陷阱和现有模型的其他限制。此外,开发人员应该将可解释的 AI 技术(例如,热图)纳入其工具中,以提高放射科医生对模型输出的理解,并使放射科医生能够提供反馈,以指导持续学习和迭代改进。在本文中,我们提供了放射科医生在日常实践中使用解释性 AI 产品时可能遇到的常见陷阱的概述。我们介绍了这些陷阱如何导致 AI 错误,并提供了 AI 开发人员可能用于缓解这些错误的潜在策略。