Suppr超能文献

IPCT-Net:用于阻塞性睡眠呼吸暂停诊断的并行信息瓶颈模态融合网络

IPCT-Net: Parallel information bottleneck modality fusion network for obstructive sleep apnea diagnosis.

作者信息

Hu Shuaicong, Wang Yanan, Liu Jian, Cui Zhaoqiang, Yang Cuiwei, Yao Zhifeng, Ge Junbo

机构信息

Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.

Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.

出版信息

Neural Netw. 2025 Jan;181:106836. doi: 10.1016/j.neunet.2024.106836. Epub 2024 Oct 20.

Abstract

Obstructive sleep apnea (OSA) is a common sleep breathing disorder and timely diagnosis helps to avoid the serious medical expenses caused by related complications. Existing deep learning (DL)-based methods primarily focus on single-modal models, which cannot fully mine task-related representations. This paper develops a modality fusion representation enhancement (MFRE) framework adaptable to flexible modality fusion types with the objective of improving OSA diagnostic performance, and providing quantitative evidence for clinical diagnostic modality selection. The proposed parallel information bottleneck modality fusion network (IPCT-Net) can extract local-global multi-view representations and eliminate redundant information in modality fusion representations through branch sharing mechanisms. We utilize large-scale real-world home sleep apnea test (HSAT) multimodal data to comprehensively evaluate relevant modality fusion types. Extensive experiments demonstrate that the proposed method significantly outperforms existing methods in terms of participant numbers and OSA diagnostic performance. The proposed MFRE framework delves into modality fusion in OSA diagnosis and contributes to enhancing the screening performance of artificial intelligence (AI)-assisted diagnosis for OSA.

摘要

阻塞性睡眠呼吸暂停(OSA)是一种常见的睡眠呼吸障碍,及时诊断有助于避免由相关并发症导致的巨额医疗费用。现有的基于深度学习(DL)的方法主要集中在单模态模型上,无法充分挖掘与任务相关的表征。本文开发了一种适用于灵活模态融合类型的模态融合表征增强(MFRE)框架,旨在提高OSA诊断性能,并为临床诊断模态选择提供定量依据。所提出的并行信息瓶颈模态融合网络(IPCT-Net)可以提取局部-全局多视图表征,并通过分支共享机制消除模态融合表征中的冗余信息。我们利用大规模真实世界家庭睡眠呼吸暂停测试(HSAT)多模态数据全面评估相关模态融合类型。大量实验表明,所提出的方法在参与者数量和OSA诊断性能方面显著优于现有方法。所提出的MFRE框架深入研究了OSA诊断中的模态融合,有助于提高人工智能(AI)辅助OSA诊断的筛查性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验