Suppr超能文献

最优 MMSE 和 MoCA 截断值用于帕金森病的认知诊断:基于数据驱动的决策树模型。

Optimal MMSE and MoCA cutoffs for cognitive diagnoses in Parkinson's disease: A data-driven decision tree model.

机构信息

Department of Neuroscience, University of Padua, Padua, Italy.

Department of Neuroscience, University of Padua, Padua, Italy; Department of Medicine, University of Padua, Padua, Italy.

出版信息

J Neurol Sci. 2024 Nov 15;466:123283. doi: 10.1016/j.jns.2024.123283. Epub 2024 Oct 22.

Abstract

BACKGROUND

Detecting cognitive impairment in Parkinson's disease (PD) is challenging due to diverse manifestations and outdated diagnostic criteria. Cognitive screening tools, as Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA), are adopted worldwide, but despite several cutoffs has been proposed for PD, no consensus has been reached, hindered by limited sample sizes, lack of validation, and inconsistent age- and education-adjustments.

OBJECTIVES

Determine the optimal MMSE and MoCA cutoffs in a large PD cohort, spanning from normal cognition (PD-NC), mild cognitive impairment (PD-MCI) to dementia (PDD), and develop a decision tree model to assist physicians in cognitive workups.

METHODS

Our retrospective Italian multicenter study involves 1780 PD, cognitively diagnosed with a level-II assessment: PD-NC(n = 700), PD-MCI(n = 706), and PDD(n = 374). Optimal cutoffs (for raw scores) were determined through ROC analysis. Then, a machine learning approach-decision trees-was adopted to validate and analyze the possible inclusion of other relevant clinical features.

RESULTS

The decision tree model selected as primary feature a MMSE cutoff ≤24 to predict dementia, and a score ≤ 27 for PD-MCI. To enhance PD-MCIvs.PD-NC accuracy, it also recommends including a MoCA score ≤ 22 for PD-MCI, and > 22 for PD-NC. Age and education were not selected as relevant features for the cognitive workup. Both MoCA and MMSE cutoffs exhibited high sensitivity and specificity in detecting PD cognitive statues.

CONCLUSIONS

For the first time, a clinical decision tree model based on robust MMSE and MoCA cutoffs has been developed, allowing to diagnose PD-MCI and/or PDD with a high accuracy and short administration time.

摘要

背景

由于帕金森病(PD)的表现多样且诊断标准陈旧,因此检测认知障碍具有挑战性。认知筛查工具,如简易精神状态检查(MMSE)和蒙特利尔认知评估(MoCA),已在全球范围内采用,但由于为 PD 提出了多个截止值,尚无共识,这是因为样本量有限、缺乏验证以及年龄和教育调整不一致所致。

目的

在涵盖从正常认知(PD-NC)、轻度认知障碍(PD-MCI)到痴呆(PDD)的大型 PD 队列中确定 MMSE 和 MoCA 的最佳截止值,并开发一个决策树模型以协助医生进行认知评估。

方法

我们的回顾性意大利多中心研究包括 1780 例 PD,通过二级评估进行认知诊断:PD-NC(n=700)、PD-MCI(n=706)和 PDD(n=374)。通过 ROC 分析确定最佳截止值(原始分数)。然后,采用机器学习方法-决策树-来验证和分析可能包含其他相关临床特征的情况。

结果

决策树模型选择 MMSE 截止值≤24 来预测痴呆,截止值≤27 来预测 PD-MCI,作为主要特征。为了提高 PD-MCI 与 PD-NC 的准确性,它还建议包括 MoCA 评分≤22 用于 PD-MCI,以及>22 用于 PD-NC。年龄和教育未被选为认知评估的相关特征。MoCA 和 MMSE 截止值在检测 PD 认知状态方面均表现出较高的敏感性和特异性。

结论

首次开发了基于可靠 MMSE 和 MoCA 截止值的临床决策树模型,可高度准确且用时短地诊断 PD-MCI 和/或 PDD。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验