Suppr超能文献

2型糖尿病合并重度抑郁症患者在言语流畅性任务中前额叶皮层的特征性激活模式及网络连通性:基于网络统计预测的功能近红外光谱研究

Characteristic Activation Pattern and Network Connectivity of Prefrontal Cortex in Patients with Type 2 Diabetes Mellitus and Major Depressive Disorder during a Verbal Fluency Task: A Functional Near-Infrared Spectroscopy Study Based on Network-Based Statistic Prediction.

作者信息

Zhang Jia-Ming, Liu Xiao-Bo, Li Yu-Xi, Li Hui-Jing, Fan Jin, Xue Chen, Yin Yun-Fang, Zhang Yuan, Nong Yu-Xuan, Wang Yi-Nan, Zheng Zhong, Zhong Dong-Ling, Li Juan, Jin Rong-Jiang

机构信息

School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China,

Department for Neural Function Detection and Regulation, West China Xiamen Hospital, Sichuan University, Xiamen, China,

出版信息

Neuroendocrinology. 2024;114(12):1112-1123. doi: 10.1159/000542235. Epub 2024 Oct 29.

Abstract

INTRODUCTION

Type 2 diabetes mellitus (T2DM) and major depressive disorder (MDD) together occur frequently among the elderly population. However, the inconsistency in assessments and limited medical resources in the community make it challenging to identify depression in patients with T2DM. This cross-sectional study aimed to investigate the activation pattern and network connectivity of prefrontal cortex (PFC) during a verbal fluency task (VFT) in patients with T2DM and MDD using functional near-infrared spectroscopy (fNIRS).

METHODS

Three parallel groups (T2DM with MDD group, T2DM group, and healthy group) with 100 participants in each group were included in the study. Recruitment took place from August 1, 2020, to December 31, 2023. Due to the close association between the PFC and depressive emotions, fNIRS was used to monitor brain activation and network connectivity of PFC in all participants during a task of Chinese-language phonological VFT. Network-based statistic prediction was adopted as data analysis method.

RESULTS

Patients in the T2DM with MDD group showed characteristic activation pattern and network connectivity in contrast with patients with T2DM and healthy controls, including decreased activation in PFC, and decreased network connectivity of right dorsolateral prefrontal cortex (DLPFC). Furthermore, the network connectivity of the right DLPFC in patients with T2DM and MDD was negatively correlated with scores of Hamilton Depression Scale-24 (HAMD-24).

CONCLUSIONS

There was a distinctive activation pattern and network connectivity of the PFC in patients with T2DM and MDD. The right DLPFC could serve as a potential target for the diagnosis and intervention of MDD in patients with T2DM.

摘要

引言

2型糖尿病(T2DM)和重度抑郁症(MDD)在老年人群中经常共同出现。然而,评估的不一致性以及社区医疗资源的有限性使得识别T2DM患者中的抑郁症具有挑战性。这项横断面研究旨在使用功能近红外光谱(fNIRS)研究T2DM合并MDD患者在言语流畅性任务(VFT)期间前额叶皮层(PFC)的激活模式和网络连通性。

方法

本研究纳入了三个平行组(T2DM合并MDD组、T2DM组和健康组),每组100名参与者。招募时间为2020年8月1日至2023年12月31日。由于PFC与抑郁情绪密切相关,因此在汉语语音VFT任务期间,使用fNIRS监测所有参与者PFC的脑激活和网络连通性。采用基于网络的统计预测作为数据分析方法。

结果

与T2DM患者和健康对照组相比,T2DM合并MDD组患者表现出特征性的激活模式和网络连通性,包括PFC激活降低以及右侧背外侧前额叶皮层(DLPFC)的网络连通性降低。此外,T2DM合并MDD患者右侧DLPFC的网络连通性与汉密尔顿抑郁量表24项(HAMD-24)评分呈负相关。

结论

T2DM合并MDD患者的PFC存在独特的激活模式和网络连通性。右侧DLPFC可作为T2DM患者MDD诊断和干预的潜在靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验