Rauckhorst Adam J, Sheldon Ryan D, Pape Daniel J, Ahmed Adnan, Falls-Hubert Kelly C, Merrill Ronald A, Brown Reid F, Deshmukh Kshitij, Vallim Thomas A, Deja Stanislaw, Burgess Shawn C, Taylor Eric B
Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA.
Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA.
Cell Metab. 2025 Jan 7;37(1):255-273.e6. doi: 10.1016/j.cmet.2024.10.013. Epub 2024 Oct 28.
Hepatic de novo lipogenesis (DNL) is a fundamental physiologic process that is often pathogenically elevated in metabolic disease. Treatment is limited by incomplete understanding of the metabolic pathways supplying cytosolic acetyl-CoA, the obligate precursor to DNL, including their interactions and proportional contributions. Here, we combined extensive C tracing with liver-specific knockout of key mitochondrial and cytosolic proteins mediating cytosolic acetyl-CoA production. We show that the mitochondrial pyruvate carrier (MPC) and ATP-citrate lyase (ACLY) gate the major hepatic lipogenic acetyl-CoA production pathway, operating in parallel with acetyl-CoA synthetase 2 (ACSS2). Given persistent DNL after mitochondrial citrate carrier (CiC) and ACSS2 double knockout, we tested the contribution of exogenous and leucine-derived acetoacetate to acetoacetyl-CoA synthetase (AACS)-dependent DNL. CiC knockout increased acetoacetate-supplied hepatic acetyl-CoA production and DNL, indicating that ketones function as mitochondrial-citrate reciprocal DNL precursors. By delineating a mitochondrial-cytosolic DNL substrate supply network, these findings may inform strategies to therapeutically modulate DNL.
肝脏从头脂肪生成(DNL)是一种基本的生理过程,在代谢性疾病中其致病性水平常常升高。由于对为DNL的必需前体——胞质乙酰辅酶A提供原料的代谢途径,包括它们之间的相互作用和相对贡献了解不全面,治疗受到限制。在此,我们将广泛的碳追踪与对介导胞质乙酰辅酶A生成的关键线粒体和胞质蛋白进行肝脏特异性敲除相结合。我们发现,线粒体丙酮酸载体(MPC)和ATP-柠檬酸裂解酶(ACLY)控制着主要的肝脏脂肪生成性乙酰辅酶A生成途径,与乙酰辅酶A合成酶2(ACSS2)并行运作。鉴于线粒体柠檬酸载体(CiC)和ACSS2双敲除后DNL持续存在,我们测试了外源性和亮氨酸衍生的乙酰乙酸对乙酰乙酰辅酶A合成酶(AACS)依赖性DNL的贡献。CiC敲除增加了由乙酰乙酸提供的肝脏乙酰辅酶A生成和DNL,表明酮类作为线粒体柠檬酸的反向DNL前体发挥作用。通过描绘线粒体-胞质DNL底物供应网络,这些发现可能为治疗性调节DNL的策略提供依据。