Suppr超能文献

开发和验证高尿酸血症患者肾脏受累模型: 一项横断面研究。

Development and validation of a renal involvement model for patients with hyperuricemia: A cross-sectional study.

机构信息

Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.

Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.

出版信息

Int J Rheum Dis. 2024 Nov;27(11):e15374. doi: 10.1111/1756-185X.15374.

Abstract

OBJECTIVE

To construct a prediction model for renal involvement in patients with hyperuricemia (HUA) based on logistic regression analysis, to achieve early risk stratification.

METHOD

In this cross-sectional study, we collected data from the National Health and Nutrition Examination Survey (NHANES), and constructed a predicted model for renal involvement in HUA patients. The discriminative ability of the model was assessed using the receiver operating characteristic (ROC) curve. Model accuracy was evaluated using the Hosmer-Lemeshow test and calibration curve, while clinical utility was assessed using decision curve analysis (DCA). Furthermore, internal and external validation cohorts were also applied to validate the model.

RESULTS

A total of 1669 patients from NHANES between 2007 and 2010 were included in the final analysis for modeling and validation. Six predictive factors including age, Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Cr, Uric Acid (UA), and sex were identified by binary logistic regression analysis for renal involvement in HUA patients and used to construct a nomogram with good consistency and accuracy. The AUC values for the predictive model, internal validation, and external validation were 0.881 (95% CI: 0.836-0.926), 0.908 (95% CI: 0.871-0.944), and 0.927 (95% CI: 0.897-0.957), respectively. The calibration curves demonstrated consistency between the nomogram and observed values. The DCA curves of the model and validation cohort indicated good clinical utility.

CONCLUSION

This study developed a predictive model for renal involvement in hyperuricemia patients with strong predictive performance and validated by internal and external cohorts, aiding in the early detection of high-risk populations for renal involvement.

摘要

目的

基于逻辑回归分析构建高尿酸血症(HUA)患者肾脏受累的预测模型,实现早期风险分层。

方法

本横断面研究中,我们从国家健康与营养调查(NHANES)中收集数据,并构建 HUA 患者肾脏受累的预测模型。使用受试者工作特征(ROC)曲线评估模型的判别能力。采用 Hosmer-Lemeshow 检验和校准曲线评估模型的准确性,采用决策曲线分析(DCA)评估模型的临床实用性。此外,还应用内部和外部验证队列对模型进行验证。

结果

最终分析中纳入了 2007 年至 2010 年 NHANES 中的 1669 例患者用于建模和验证。通过二元逻辑回归分析确定了 6 个预测因素,包括年龄、收缩压(SBP)、舒张压(DBP)、Cr、尿酸(UA)和性别,用于构建具有良好一致性和准确性的列线图。预测模型、内部验证和外部验证的 AUC 值分别为 0.881(95%CI:0.836-0.926)、0.908(95%CI:0.871-0.944)和 0.927(95%CI:0.897-0.957)。校准曲线表明列线图与观察值之间具有一致性。模型和验证队列的 DCA 曲线表明具有良好的临床实用性。

结论

本研究开发了一种预测 HUA 患者肾脏受累的预测模型,具有较强的预测性能,并通过内部和外部队列进行验证,有助于早期发现肾脏受累的高危人群。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验