Lesko Catherine R, Zalla Lauren C, Heyward James, Joseph Corey, Edwards Jessie K
Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD 21205.
Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27559.
Curr Epidemiol Rep. 2023 Dec;10(4):221-239. doi: 10.1007/s40471-023-00331-1. Epub 2023 Sep 22.
When competing events occur, there are two main options for handling them analytically that invoke different assumptions: 1) censor person-time after a competing event (which is akin to assuming they could be prevented) to calculate a conditional risk; or 2) do not censor them (allow them to occur) to calculate an unconditional risk. The choice of estimand has implications when weighing the relative frequency of a beneficial outcome and an adverse outcome in a risk-benefit analysis.
We review the assumptions and interpretations underlying the two main approaches to analyzing competing risks. Using a popular metric in risk-benefit analyses, the Benefit-Risk Ratio, and a toy dataset, we demonstrated that conclusions about whether a treatment was more beneficial or more harmful can depend on whether one uses conditional or unconditional risks.
We argue that unconditional risks are more relevant to decision-making about exposures with competing outcomes than conditional risks.
当出现竞争事件时,在进行分析处理时有两种主要方法,它们基于不同的假设:1)在竞争事件发生后审查个体时间(这类似于假设它们可以被预防)以计算条件风险;或2)不审查它们(允许它们发生)以计算无条件风险。在权衡风险效益分析中有益结果和不良结果的相对频率时,估计量的选择具有重要意义。
我们回顾了分析竞争风险的两种主要方法背后的假设和解释。使用风险效益分析中一种常用的指标——效益风险比,以及一个简单数据集,我们证明了关于一种治疗是更有益还是更有害的结论可能取决于使用的是条件风险还是无条件风险。
我们认为,与条件风险相比,无条件风险在关于具有竞争结果的暴露的决策中更具相关性。