Suppr超能文献

荧光寿命的化学调控

Chemical Regulation of Fluorescence Lifetime.

作者信息

Dai Jianan, Zhang Xin

机构信息

Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China.

Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.

出版信息

Chem Biomed Imaging. 2023 Oct 26;1(9):796-816. doi: 10.1021/cbmi.3c00091. eCollection 2023 Dec 25.

Abstract

Fluorescence lifetime has significant applications in the field of fluorescence microscopy. Effective modulation of fluorescence lifetime can be achieved by controlling the radiative versus nonradiative processes of fluorophores. In this review, we systematically analyze and summarize chemical approaches that achieve fluorescence lifetime modulation for three different types of fluorophores, including small molecules, quantum dots, and metal complexes. In particular, this review is focused on the chemical mechanisms underlying fluorescence lifetime, the structure-function relationship that defines how chemical regulation is achieved, and the chemical principles that can be used to modulate different scaffolds of fluorophores. We aim to provide important resources for gaining a deeper understanding of fluorescence lifetime modulation, through in-depth investigation into the modulation mechanisms of various fluorescence systems. Perspectives are also proposed to enable future investigation on fluorescence lifetime modulation, a field that bears promises to drive the advancement and application of fluorescence imaging technology.

摘要

荧光寿命在荧光显微镜领域有着重要应用。通过控制荧光团的辐射与非辐射过程,可以实现对荧光寿命的有效调制。在本综述中,我们系统地分析和总结了实现三种不同类型荧光团(包括小分子、量子点和金属配合物)荧光寿命调制的化学方法。特别地,本综述聚焦于荧光寿命背后的化学机制、定义如何实现化学调控的结构 - 功能关系,以及可用于调制不同荧光团支架的化学原理。我们旨在通过深入研究各种荧光系统的调制机制,为更深入理解荧光寿命调制提供重要资源。还提出了展望,以推动未来对荧光寿命调制的研究,这一领域有望推动荧光成像技术的进步和应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0122/11504423/eca6d429299f/im3c00091_0001.jpg

相似文献

1
Chemical Regulation of Fluorescence Lifetime.
Chem Biomed Imaging. 2023 Oct 26;1(9):796-816. doi: 10.1021/cbmi.3c00091. eCollection 2023 Dec 25.
2
Chemical Control of Fluorescence Lifetime towards Multiplexing Imaging.
Angew Chem Int Ed Engl. 2024 Jun 17;63(25):e202403029. doi: 10.1002/anie.202403029. Epub 2024 May 14.
3
Radiative decay engineering: biophysical and biomedical applications.
Anal Biochem. 2001 Nov 1;298(1):1-24. doi: 10.1006/abio.2001.5377.
4
Fluorescence lifetime imaging microscopy in the medical sciences.
Protoplasma. 2014 Mar;251(2):293-305. doi: 10.1007/s00709-013-0598-4. Epub 2014 Jan 4.
5
Directed Evolution of a Bright Variant of mCherry: Suppression of Nonradiative Decay by Fluorescence Lifetime Selections.
J Phys Chem B. 2022 Jun 30;126(25):4659-4668. doi: 10.1021/acs.jpcb.2c01956. Epub 2022 Jun 16.
6
All-Polymer Microcavities for the Fluorescence Radiative Rate Modification of a Diketopyrrolopyrrole Derivative.
ACS Omega. 2022 Apr 25;7(18):15499-15506. doi: 10.1021/acsomega.2c00167. eCollection 2022 May 10.
8
Phasor-based single-molecule fluorescence lifetime imaging using a wide-field photon-counting detector.
Proc SPIE Int Soc Opt Eng. 2009 Jan 24;7185(71850T). doi: 10.1117/12.809496.
10
Imaging molecular interactions by multiphoton FLIM.
Biol Cell. 2004 Apr;96(3):231-6. doi: 10.1016/j.biolcel.2003.12.006.

引用本文的文献

1
Thioflavin T Inspirations: On the Photophysical and Aggregation Properties of Fluorescent Difluoroborates Based on the Benzothiazole Core.
J Phys Chem A. 2025 Apr 24;129(16):3663-3671. doi: 10.1021/acs.jpca.5c01254. Epub 2025 Apr 9.
2
Nonadiabatic Coupling Dictates the Site-Specific Excited-State Decay Pathways of Fluorophenols.
ACS Omega. 2025 Feb 15;10(7):7389-7399. doi: 10.1021/acsomega.4c11321. eCollection 2025 Feb 25.
3
Photodynamic therapy on mRNA levels in bacteria.
Lasers Med Sci. 2024 Aug 31;39(1):229. doi: 10.1007/s10103-024-04179-9.

本文引用的文献

1
Monitoring amyloid aggregation a twisted intramolecular charge transfer (TICT)-based fluorescent sensor array.
Chem Sci. 2023 Apr 5;14(18):4786-4795. doi: 10.1039/d2sc06710b. eCollection 2023 May 10.
3
Synthesis and Unexpected Optical Properties of Ionic Phosphorus Heterocycles with P-Regulated Noncovalent Interactions.
J Org Chem. 2023 Mar 3;88(5):2792-2800. doi: 10.1021/acs.joc.2c02424. Epub 2023 Feb 14.
4
Photoactive Copper Complexes: Properties and Applications.
Chem Rev. 2022 Nov 23;122(22):16365-16609. doi: 10.1021/acs.chemrev.2c00033. Epub 2022 Nov 9.
5
Synthesis of Weakly Confined, Cube-Shaped, and Monodisperse Cadmium Chalcogenide Nanocrystals with Unexpected Photophysical Properties.
J Am Chem Soc. 2022 Sep 21;144(37):16872-16882. doi: 10.1021/jacs.2c05151. Epub 2022 Sep 6.
6
Toward Improved Charge Separation through Conformational Control in Copper Coordination Complexes.
J Am Chem Soc. 2022 Jul 13;144(27):12116-12126. doi: 10.1021/jacs.2c02580. Epub 2022 Jun 28.
7
Restricted Photoinduced Conformational Change in the Cu(I) Complex for Sensing Mechanical Properties.
ACS Macro Lett. 2017 Sep 19;6(9):920-924. doi: 10.1021/acsmacrolett.7b00465. Epub 2017 Aug 14.
8
Live-Cell Fluorescence Lifetime Multiplexing Using Synthetic Fluorescent Probes.
ACS Chem Biol. 2022 Jun 17;17(6):1321-1327. doi: 10.1021/acschembio.2c00041. Epub 2022 May 18.
9
Cationization-Enhanced Type I and Type II ROS Generation for Photodynamic Treatment of Drug-Resistant Bacteria.
ACS Nano. 2022 Jun 28;16(6):9130-9141. doi: 10.1021/acsnano.2c01206. Epub 2022 May 18.
10
Bulky and Stable Copper(I)-Phenanthroline Complex: Impact of Steric Strain and Symmetry on the Excited-State Properties.
Inorg Chem. 2022 May 16;61(19):7296-7307. doi: 10.1021/acs.inorgchem.1c03901. Epub 2022 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验