Suppr超能文献

原发性醛固酮增多症预测模型在继发性高血压决策支持中的影响

The impact of a primary aldosteronism predictive model in secondary hypertension decision support.

作者信息

Mack Peter B, Cole Casey, Lee Mintaek, Peterson Lisa, Lundy Matthew, Hegarty Karen, Espinoza William

机构信息

Institute of Quality and Safety, Novant Health, Winston-Salem, NC 27103, United States.

Community Health and Wellness Institute, Novant Health, Winston-Salem, NC 27103, United States.

出版信息

JAMIA Open. 2024 Oct 28;7(4):ooae123. doi: 10.1093/jamiaopen/ooae123. eCollection 2024 Dec.

Abstract

OBJECTIVES

To determine whether the addition of a primary aldosteronism (PA) predictive model to a secondary hypertension decision support tool increases screening for PA in a primary care setting.

MATERIALS AND METHODS

One hundred fifty-three primary care clinics were randomized to receive a secondary hypertension decision support tool with or without an integrated predictive model between August 2023 and April 2024.

RESULTS

For patients with risk scores in the top 1 percentile, 63/2896 (2.2%) patients where the alert was displayed in model clinics had the order set launched, while 12/1210 (1.0%) in no-model clinics had the order set launched (). Nineteen of 2896 (0.66%) of these highest risk patients in model clinics had an aldosterone-to-renin ratio (ARR) ordered compared to 0/1210 (0.0%) patients in no-model clinics (). For patients with scores not in the top 1 percentile, 438/20 493 (2.1%) patients in model clinics had the order set launched compared to 273/17 820 (1.5%) in no-model clinics ( < .001). One hundred twenty-four of 20 493 (0.61%) in model clinics had an ARR ordered compared to 34/17 820 (0.19%) in the no-model clinics ( < .001).

DISCUSSION

The addition of a PA predictive model to secondary hypertension alert displays and triggering criteria along with order set displays and order preselection criteria results in a statistically and clinically significant increase in screening for PA, a condition that clinicians insufficiently screen for currently.

CONCLUSION

Addition of a predictive model for an under-screened condition to traditional clinical decision support may increase screening for these conditions.

摘要

目的

确定在二级高血压决策支持工具中添加原发性醛固酮增多症(PA)预测模型是否会增加基层医疗环境中对PA的筛查。

材料与方法

2023年8月至2024年4月期间,153家基层医疗诊所被随机分配,分别接受包含或不包含综合预测模型的二级高血压决策支持工具。

结果

对于风险评分处于前1%的患者,模型诊所中显示警报的2896例患者中有63例(2.2%)启动了医嘱集,而无模型诊所中的1210例患者中有12例(1.0%)启动了医嘱集()。模型诊所中这些最高风险患者中有2896例中的19例(0.66%)进行了醛固酮与肾素比值(ARR)检测,而无模型诊所中的1210例患者中为0例(0.0%)()。对于风险评分不在前1%的患者,模型诊所中有438例(2.1%)启动了医嘱集,而无模型诊所中有273例(1.5%)启动了医嘱集(<0.001)。模型诊所中20493例患者中有124例(0.61%)进行了ARR检测,而无模型诊所中17820例患者中有34例(0.19%)进行了检测(<0.001)。

讨论

在二级高血压警报显示和触发标准以及医嘱集显示和医嘱预选标准中添加PA预测模型,导致对PA的筛查在统计学和临床上均有显著增加,而PA目前临床医生筛查不足。

结论

在传统临床决策支持中添加针对筛查不足疾病的预测模型可能会增加对这些疾病的筛查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验