Meador William D, Mathur Mrudang, Kakaletsis Sotirios, Lin Chien-Yu, Bersi Matthew R, Rausch Manuel K
University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton Street, Austin, 78712, TX, United States of America.
University of Texas at Austin, Department of Mechanical Engineering, 204 E Dean Keeton Street, Austin, 78712, TX, United States of America.
Extreme Mech Lett. 2022 Aug;55. doi: 10.1016/j.eml.2022.101799. Epub 2022 Jun 2.
The biomechanical phenotype of soft tissues - i.e., the sum of spatially- and directionally-varying mechanical properties - is a critical marker of tissue health and disease. While biomechanical phenotyping is always challenging, it is particularly difficult with miniscule tissues. For example, tissues from small animal models are often only millimeters in size, which prevents the use of traditional test methods, such as uniaxial tensile testing. To overcome this challenge, our current work describes and tests a novel experimental and numerical pipeline. First, we introduce a micro-bulge test device with which we pressurize and inflate miniscule soft tissues. We combine this microbulge device with an optical coherence tomography device to also image the samples during inflation. Based on pressure data and images we then perform inverse finite element simulations to identify our tissues' unknown material parameters. For validation, we identify the material parameters of a thin sheet of latex rubber via both uniaxial tensile testing and via our novel pipeline. Next, we demonstrate our pipeline against anterior tricuspid valve leaflets from rats. The resulting material parameters for these tissues compare excellently with data collected in sheep via standard planar biaxial testing. Additionally, we show that our device is compatible with other imaging modalities such as 2-Photon microscopy. To this end, we image the in-situ microstructural changes of the leaflets during inflation using second harmonic generation imaging. In summary, we introduce a novel pipeline to biomechanically phenotype miniscule soft tissues and demonstrate its value by phenotyping the biomechanics of the anterior tricuspid valve leaflets from rats.
软组织的生物力学表型——即空间和方向变化的力学性能总和——是组织健康和疾病的关键标志。虽然生物力学表型分析一直具有挑战性,但对于微小组织来说尤其困难。例如,来自小动物模型的组织通常只有几毫米大小,这使得无法使用传统测试方法,如单轴拉伸测试。为了克服这一挑战,我们目前的工作描述并测试了一种新颖的实验和数值流程。首先,我们引入了一种微膨胀测试装置,用它对微小软组织进行加压和充气。我们将这种微膨胀装置与光学相干断层扫描装置相结合,以便在充气过程中对样本进行成像。然后,基于压力数据和图像,我们进行逆有限元模拟,以确定组织未知的材料参数。为了验证,我们通过单轴拉伸测试和我们新颖的流程确定了一片薄乳胶橡胶的材料参数。接下来,我们用大鼠的三尖瓣前叶验证了我们的流程。这些组织得到的材料参数与通过标准平面双轴测试在绵羊身上收集的数据相比非常吻合。此外,我们表明我们的装置与其他成像方式兼容,如双光子显微镜。为此,我们使用二次谐波生成成像对小叶在充气过程中的原位微观结构变化进行成像。总之,我们引入了一种新颖的流程来对微小软组织进行生物力学表型分析,并通过对大鼠三尖瓣前叶的生物力学进行表型分析来证明其价值。