Jodeiri Ata, Seyedarabi Hadi, Shahbazi Parmida, Shahbazi Fatemeh, Hashemi Seyed Mohammad Mahdi, Mortazavi Seyed Mohammad Javad, Shafiei Seyyed Hossein
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Front Surg. 2024 Oct 15;11:1329085. doi: 10.3389/fsurg.2024.1329085. eCollection 2024.
This study presents the development and validation of a Deep Learning Convolutional Neural Network (CNN) model for estimating acetabular version (AV) from native hip plain radiographs.
Utilizing a dataset comprising 300 participants with unrelated pelvic complaints, the CNN model was trained and evaluated against CT-Scans, considered the gold standard, using a 5-fold cross-validation.
Notably, the CNN model exhibited a robust performance, demonstrating a strong Pearson correlation with CT-Scans (right hip: = 0.70, < 0.001; left hip: = 0.71, < 0.001) and achieving a mean absolute error of 2.95°. Remarkably, over 83% of predictions yielded errors ≤5°, highlighting the model's high precision in AV estimation.
The model holds promise in preoperative planning for hip arthroplasty, potentially reducing complications like recurrent dislocation and component wear. Future directions include further refinement of the CNN model, with ongoing investigations aimed at enhancing preoperative planning potential and ensuring comprehensive assessment across diverse patient populations, particularly in diseased cases. Additionally, future research could explore the model's potential value in scenarios necessitating minimized ionizing radiation exposure, such as post-operative evaluations.
本研究介绍了一种深度学习卷积神经网络(CNN)模型的开发与验证,该模型用于从髋关节原生平片估计髋臼角(AV)。
利用一个包含300名有无关骨盆疾病参与者的数据集,以CT扫描(被视为金标准)为对照,采用5折交叉验证法对CNN模型进行训练和评估。
值得注意的是,CNN模型表现出强大的性能,与CT扫描显示出很强的皮尔逊相关性(右髋:= 0.70,< 0.001;左髋:= 0.71,< 0.001),平均绝对误差为2.95°。值得注意的是,超过83%的预测误差≤5°,突出了该模型在AV估计中的高精度。
该模型在髋关节置换术前规划中具有前景,可能减少复发性脱位和假体磨损等并发症。未来的方向包括进一步优化CNN模型,正在进行的研究旨在增强术前规划潜力,并确保对不同患者群体进行全面评估,特别是在患病病例中。此外,未来的研究可以探索该模型在需要尽量减少电离辐射暴露的情况下(如术后评估)的潜在价值。