Suppr超能文献

硼基材料催化轻质烷烃氧化脱氢的动力学研究

Kinetic Insights into Boron-Based Materials Catalyzed Oxidative Dehydrogenation of Light Alkanes.

作者信息

Tian Hao, Xu Bingjun

机构信息

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

出版信息

Precis Chem. 2024 Apr 1;2(5):182-192. doi: 10.1021/prechem.4c00003. eCollection 2024 May 27.

Abstract

High selectivity toward alkenes in oxidative dehydrogenation (ODH) of light alkanes makes boron-based materials promising catalysts. However, many key mechanistic aspects are still debated due to the challenge of capturing fleeting reaction intermediates. Kinetic analysis, including determining reaction orders and activation energy, could be informative for reactions involving radical intermediates but has not been extensively exploited. This Review summarizes the current understanding of the apparent alkane reaction order and the apparent activation energy in the boron-catalyzed ODH. Despite varying compositions and structures, a majority of boron-based catalysts share many common features, including alkene selectivity, the evolution and the formation of active site, and the apparent kinetic properties. These common trends could be attributed to the shared gas-phase radical-mediated reaction pathways and the formation of active hydroxylated boron oxide species on boron-containing materials under ODH conditions. Values of apparent alkane reaction orders and apparent activation energies are sensitive and reliable experimental measures of the contributions of the gas-phase radical-mediated and surface-mediated pathways, suggesting the outline of a general mechanistic framework of the boron-catalyzed ODH.

摘要

轻质烷烃氧化脱氢(ODH)反应中对烯烃的高选择性使得硼基材料成为有前景的催化剂。然而,由于捕获瞬态反应中间体存在挑战,许多关键的机理方面仍存在争议。动力学分析,包括确定反应级数和活化能,对于涉及自由基中间体的反应可能具有参考价值,但尚未得到广泛应用。本综述总结了目前对硼催化ODH中表观烷烃反应级数和表观活化能的理解。尽管硼基催化剂的组成和结构各不相同,但大多数硼基催化剂具有许多共同特征,包括烯烃选择性、活性位点的演化和形成以及表观动力学性质。这些共同趋势可归因于共享的气相自由基介导反应途径以及在ODH条件下含硼材料上形成的活性羟基化硼氧化物物种。表观烷烃反应级数和表观活化能的值是气相自由基介导和表面介导途径贡献的灵敏且可靠的实验测量值,这表明了硼催化ODH一般机理框架的轮廓。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921c/11503908/c9e64831e491/pc4c00003_0001.jpg

相似文献

1
Kinetic Insights into Boron-Based Materials Catalyzed Oxidative Dehydrogenation of Light Alkanes.
Precis Chem. 2024 Apr 1;2(5):182-192. doi: 10.1021/prechem.4c00003. eCollection 2024 May 27.
2
Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation.
Acc Chem Res. 2018 Oct 16;51(10):2556-2564. doi: 10.1021/acs.accounts.8b00330. Epub 2018 Oct 4.
3
Understanding the Unique Antioxidation Property of Boron-Based Catalysts during Oxidative Dehydrogenation of Alkanes.
J Phys Chem Lett. 2021 Sep 16;12(36):8770-8776. doi: 10.1021/acs.jpclett.1c02709. Epub 2021 Sep 7.
4
Progress in selective oxidative dehydrogenation of light alkanes to olefins promoted by boron nitride catalysts.
Chem Commun (Camb). 2018 Sep 27;54(78):10936-10946. doi: 10.1039/c8cc04604b.
5
Oxidative dehydrogenation of light alkanes to olefins on metal-free catalysts.
Chem Soc Rev. 2021 Feb 1;50(2):1438-1468. doi: 10.1039/d0cs01174f.
6
Boron nitride materials as emerging catalysts for oxidative dehydrogenation of light alkanes.
Nanotechnology. 2022 Aug 3;33(43). doi: 10.1088/1361-6528/ac7c23.
7
8
Probing the Transformation of Boron Nitride Catalysts under Oxidative Dehydrogenation Conditions.
J Am Chem Soc. 2019 Jan 9;141(1):182-190. doi: 10.1021/jacs.8b08165. Epub 2018 Dec 20.
9
B-MWW Zeolite: The Case Against Single-Site Catalysis.
Angew Chem Int Ed Engl. 2020 Apr 16;59(16):6546-6550. doi: 10.1002/anie.201914696. Epub 2020 Feb 28.
10
Deep Potential Molecular Dynamics Study of Propane Oxidative Dehydrogenation.
J Phys Chem A. 2024 Mar 7;128(9):1656-1664. doi: 10.1021/acs.jpca.3c07859. Epub 2024 Feb 23.

引用本文的文献

1
Low-temperature oxidation of hexagonal boron nitride during oxidative dehydrogenation reactions.
Sci Rep. 2025 Jul 2;15(1):22879. doi: 10.1038/s41598-025-05681-y.
2
HCl Treatment of Mixed-Phase MoVTeNbO Catalysts for Enhanced Performance in Selective Oxidation of Propane.
Precis Chem. 2025 Jan 30;3(4):206-213. doi: 10.1021/prechem.4c00089. eCollection 2025 Apr 28.

本文引用的文献

1
Tracking Active Phase Behavior on Boron Nitride during the Oxidative Dehydrogenation of Propane Using Operando X-ray Raman Spectroscopy.
J Am Chem Soc. 2023 Nov 29;145(47):25686-25694. doi: 10.1021/jacs.3c08679. Epub 2023 Nov 6.
2
4
Site Diversity and Mechanism of Metal-Exchanged Zeolite Catalyzed Non-Oxidative Propane Dehydrogenation.
Adv Sci (Weinh). 2023 May;10(13):e2207756. doi: 10.1002/advs.202207756. Epub 2023 Mar 10.
5
Antiexfoliating h-BN⊃InO Catalyst for Oxidative Dehydrogenation of Propane in a High-Temperature and Water-Rich Environment.
J Am Chem Soc. 2023 Mar 22;145(11):6184-6193. doi: 10.1021/jacs.2c12136. Epub 2023 Mar 9.
6
Unraveling Radical and Oxygenate Routes in the Oxidative Dehydrogenation of Propane over Boron Nitride.
J Am Chem Soc. 2023 Apr 12;145(14):7910-7917. doi: 10.1021/jacs.2c12970. Epub 2023 Mar 3.
8
An Atomistic Picture of Boron Oxide Catalysts for Oxidative Dehydrogenation Revealed by Ultrahigh Field B-O Solid-State NMR Spectroscopy.
J Am Chem Soc. 2022 Oct 19;144(41):18766-18771. doi: 10.1021/jacs.2c08237. Epub 2022 Oct 10.
9
Engineering O-O Species in Boron Nitrous Nanotubes Increases Olefins for Propane Oxidative Dehydrogenation.
J Am Chem Soc. 2022 Apr 6;144(13):5930-5936. doi: 10.1021/jacs.1c13563. Epub 2022 Mar 22.
10
Water-Tolerant Boron-Substituted MCM-41 for Oxidative Dehydrogenation of Propane.
ACS Omega. 2022 Jan 13;7(3):3083-3092. doi: 10.1021/acsomega.1c06504. eCollection 2022 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验