Compagnoni Aldo, Childs Dylan, Knight Tiffany M, Salguero-Gómez Roberto
Martin Luther University Halle-Wittenberg Halle (Saale) Germany.
Department of Community Ecology Helmholtz Centre for Environmental Research-UFZ Halle (Saale) Germany.
Ecol Evol. 2024 Oct 29;14(10):e70484. doi: 10.1002/ece3.70484. eCollection 2024 Oct.
Understanding mechanisms and predicting natural population responses to climate is a key goal of Ecology. However, studies explicitly linking climate to population dynamics remain limited. Antecedent effect models are a set of statistical tools that capitalize on the evidence provided by climate and population data to select time windows correlated with a response (e.g., survival, reproduction). Thus, these models can serve as both a predictive and exploratory tool. We compare the predictive performance of antecedent effect models against simpler models and showcase their exploratory analysis potential by selecting a case study with high predictive power. We fit three antecedent effect models: (1) weighted mean models (WMM), which weigh the importance of monthly anomalies based on a Gaussian curve, (2) stochastic antecedent models (SAM), which weigh the importance of monthly anomalies using a Dirichlet process, and (3) regularized regressions using the Finnish horseshoe model (FHM), which estimate a separate effect size for each monthly anomaly. We compare these approaches to a linear model using a yearly climatic predictor and a null model with no predictors. We use demographic data from 77 natural populations of 34 plant species ranging between seven and 36 years in length. We then fit models to the asymptotic population growth rate () and its underlying vital rates: survival, development, and reproduction. We find that models including climate do not consistently outperform null models. We hypothesize that the effect of yearly climate is too complex, weak, and confounded by other factors to be easily predicted using monthly precipitation and temperature data. On the other hand, in our case study, antecedent effect models show biologically sensible correlations between two precipitation anomalies and multiple vital rates. We conclude that, in temporal datasets with limited sample sizes, antecedent effect models are better suited as exploratory tools for hypothesis generation.
理解自然种群对气候的响应机制并进行预测是生态学的一个关键目标。然而,明确将气候与种群动态联系起来的研究仍然有限。先行效应模型是一组统计工具,利用气候和种群数据提供的证据来选择与响应(如生存、繁殖)相关的时间窗口。因此,这些模型既可以作为预测工具,也可以作为探索性工具。我们将先行效应模型的预测性能与更简单的模型进行比较,并通过选择一个具有高预测能力的案例研究来展示它们的探索性分析潜力。我们拟合了三种先行效应模型:(1)加权平均模型(WMM),它基于高斯曲线权衡月度异常的重要性;(2)随机先行模型(SAM),它使用狄利克雷过程权衡月度异常的重要性;(3)使用芬兰马蹄模型(FHM)的正则化回归,它为每个月度异常估计一个单独的效应大小。我们将这些方法与使用年度气候预测变量的线性模型和没有预测变量的空模型进行比较。我们使用了来自34种植物的77个自然种群的人口统计数据,时间跨度在7到36年之间。然后,我们将模型拟合到渐近种群增长率()及其潜在的生命率:生存、发育和繁殖。我们发现,包含气候因素的模型并不总是优于空模型。我们推测,年度气候的影响过于复杂、微弱,且被其他因素混淆,难以使用月度降水和温度数据轻易预测。另一方面,在我们的案例研究中,先行效应模型显示出两个降水异常与多个生命率之间具有生物学意义上的相关性。我们得出结论,在样本量有限的时间序列数据集中,先行效应模型更适合作为生成假设的探索性工具。