Suppr超能文献

一次性聚对苯二甲酸乙二醇酯瓶衍生的纳米塑料促进细菌转化和外膜囊泡分泌中的抗生素耐药性。

Single-use polyethylene terephthalate bottle-derived nanoplastics propagate antibiotic resistance in bacteria transformation and outer membrane vesicle secretion.

机构信息

Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali, 140306, Punjab, India.

Department of Biotechnology, Chandigarh College of Technology, CGC, Landran, 140307, Punjab, India.

出版信息

Nanoscale. 2024 Nov 28;16(46):21360-21378. doi: 10.1039/d4nr02613f.

Abstract

Plastic pollution arising from single-use plastic bottles (SUPBs) and containers leads to the formation of micro/nanoplastics (NPs). These NPs raise concerns due to their potential toxicity and interactions with microorganisms. In various environments, including our digestive system, both microorganisms and plastics coexist. The interactions between these NPs and microorganisms can have far-reaching consequences, potentially affecting the ecosystems and human health. Therefore, understanding these interactions is crucial for addressing the challenges posed by plastic pollution. This study investigated the role of NPs in propagating antibiotic resistance (AR), specifically through outer membrane vesicles (OMVs), which is a mechanism that has not been fully explored to date in terms of NPs' effects. To explore this, NPs were synthesized using polyethylene terephthalate (PET) SUPBs, mimicking the natural chemical composition of environmental nanoplastics, unlike previous studies, which used pure PET, polystyrene (PS) or other pure plastic materials. The resulting PET bottle-derived nanoplastics (PBNPs), which exhibited diverse shapes and sizes (50-850 nm), were found to facilitate horizontal gene transfer (HGT) through transformation and outer membrane vesicles (OMVs), enabling the transport of plasmids among bacteria. In transformation, PBNPs physically carried plasmids across the bacterial membrane. In another scenario, PBNPs induced oxidative stress and bacterial surface damage, which led to the upregulation of stress response-associated genes and the escalation of OMV secretion in . This novel pathway highlights how PBNPs contribute to AR gene dissemination, potentially exacerbating the global antibiotic resistance crisis. Furthermore, PBNPs mediate cross-species gene transfer from to , underscoring their impact on diverse microorganisms, including those in the human gut. Our findings suggest that nanoplastics may be an unrecognized contributor to the rising tide of antibiotic resistance, with significant consequences for human health and the environment. Molecular analyses revealed the upregulated expression of genes associated with stress response and OMV secretion, offering deeper insights into the biological mechanisms affected by PBNPs. This study offers crucial insights into the interactions of NPs and microorganisms for developing strategies to address the ecological and health implications of nanoplastic contamination.

摘要

由于一次性塑料瓶(SUPB)和容器造成的塑料污染会导致微/纳米塑料(NPs)的形成。由于这些 NPs 具有潜在的毒性以及与微生物的相互作用,因此引起了人们的关注。在包括我们的消化系统在内的各种环境中,微生物和塑料共存。这些 NPs 与微生物之间的相互作用可能会产生深远的影响,从而可能影响生态系统和人类健康。因此,了解这些相互作用对于应对塑料污染带来的挑战至关重要。本研究调查了 NPs 通过外膜囊泡(OMVs)传播抗生素耐药性(AR)的作用,这是一种迄今为止尚未充分探索的机制,就 NPs 对其影响而言。为了探索这一点,使用聚对苯二甲酸乙二醇酯(PET)SUPB 合成了 NPs,模仿了环境纳米塑料的天然化学成分,与以前使用纯 PET、聚苯乙烯(PS)或其他纯塑料材料的研究不同。所得的 PET 瓶衍生纳米塑料(PBNPs)表现出多种形状和尺寸(50-850nm),通过转化和外膜囊泡(OMVs)促进水平基因转移(HGT),使质粒在细菌之间运输。在转化中,PBNPs 物理携带质粒穿过细菌膜。在另一种情况下,PBNPs 诱导氧化应激和细菌表面损伤,导致与应激反应相关的基因上调和 OMV 分泌增加。这种新途径突出了 PBNPs 如何促进 AR 基因的传播,可能加剧了全球抗生素耐药危机。此外,PBNPs 介导从 到 的种间基因转移,强调了它们对包括人类肠道中的各种微生物的影响。我们的研究结果表明,纳米塑料可能是抗生素耐药性不断上升的一个未被认识的因素,对人类健康和环境产生重大影响。分子分析显示与应激反应和 OMV 分泌相关的基因表达上调,为 PBNPs 影响的生物学机制提供了更深入的了解。本研究为研究 NPs 和微生物的相互作用提供了重要的见解,以制定应对纳米塑料污染的生态和健康影响的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验