Suppr超能文献

通过硝酸盐氨化作用产生的前所未有的一氧化氮,具有独特的一氧化氮同位素特征。

Unprecedented NO production by nitrate-ammonifying with distinctive NO isotopocule signatures.

作者信息

Xu Zhenxing, Hattori Shohei, Masuda Yoko, Toyoda Sakae, Koba Keisuke, Yu Pei, Yoshida Naohiro, Du Zong-Jun, Senoo Keishi

机构信息

Marine College, Shandong University, Weihai, China.

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.

出版信息

mBio. 2024 Dec 11;15(12):e0254024. doi: 10.1128/mbio.02540-24. Epub 2024 Oct 30.

Abstract

Dissimilatory nitrate reduction to ammonium (DNRA), driven by nitrate-ammonifying bacteria, is an increasingly appreciated nitrogen-cycling pathway in terrestrial ecosystems. This process reportedly generates nitrous oxide (NO), a strong greenhouse gas with ozone-depleting effects. However, it remains poorly understood how NO is produced by environmental nitrate-ammonifiers and how to identify DNRA-derived NO. In this study, we characterize two novel enzymatic pathways responsible for NO production in strains, which are predominant nitrate-ammonifying bacteria in paddy soils. The first pathway involves a membrane-bound nitrate reductase (Nar) and a hybrid cluster protein complex (Hcp-Hcr) that catalyzes the conversion of NO to NO and subsequently to NO. The second pathway is observed in Nar-deficient bacteria, where the nitrite reductase (NrfA) generates NO, which is then reduced to NO by Hcp-Hcr. These enzyme combinations are prevalent across the domain Bacteria. Moreover, we observe distinctive isotopocule signatures of DNRA-derived NO from other established NO production pathways, especially through the highest N-site preference (SP) values (43.0‰-49.9‰) reported so far, indicating a robust means for NO source partitioning. Our findings demonstrate two novel NO production pathways in DNRA that can be isotopically distinguished from other pathways.IMPORTANCEStimulation of DNRA is a promising strategy to improve fertilizer efficiency and reduce NO emission in agriculture soils. This process converts water-leachable NO and NO into soil-adsorbable NH, thereby alleviating nitrogen loss and NO emission resulting from denitrification. However, several studies have noted that DNRA can also be a source of NO, contributing to global warming. This contribution is often masked by other NO generation processes, leading to a limited understanding of DNRA as an NO source. Our study reveals two widespread yet overlooked NO production pathways in , the predominant DNRA bacteria in paddy soils, along with their distinctive isotopocule signatures. These findings offer novel insights into the role of the DNRA bacteria in NO production and underscore the significance of NO isotopocule signatures in microbial NO source tracking.

摘要

由硝酸盐氨化细菌驱动的异化硝酸盐还原为铵(DNRA)是陆地生态系统中一种日益受到重视的氮循环途径。据报道,这一过程会产生一氧化二氮(N₂O),一种具有消耗臭氧层作用的强效温室气体。然而,目前对于环境中的硝酸盐氨化菌如何产生N₂O以及如何识别源自DNRA的N₂O仍知之甚少。在本研究中,我们描述了两种负责在菌株中产生N₂O的新酶促途径,这些菌株是稻田土壤中主要的硝酸盐氨化细菌。第一条途径涉及一种膜结合硝酸盐还原酶(Nar)和一种混合簇蛋白复合物(Hcp - Hcr),该复合物催化将NO₂转化为NO,并随后转化为N₂O。第二条途径在缺乏Nar的细菌中观察到,其中亚硝酸盐还原酶(NrfA)产生NO₂,然后由Hcp - Hcr将其还原为N₂O。这些酶组合在细菌域中普遍存在。此外,我们观察到源自DNRA的N₂O与其他已确定的N₂O产生途径具有独特的同位素特征,特别是通过迄今为止报道的最高的N位点偏好(SP)值(43.0‰ - 49.9‰),这表明了一种用于N₂O源分配的有效方法。我们的研究结果证明了DNRA中两种新的N₂O产生途径,它们在同位素上可与其他途径区分开来。重要性刺激DNRA是提高农业土壤肥料效率和减少N₂O排放的一种有前景的策略。这一过程将可水溶淋失的NO₃⁻和NO₂⁻转化为可被土壤吸附的NH₄⁺,从而减轻反硝化作用导致的氮损失和N₂O排放。然而,一些研究指出DNRA也可能是N₂O的一个来源,对全球变暖有贡献。这种贡献常常被其他N₂O生成过程所掩盖,导致对DNRA作为N₂O源的理解有限。我们的研究揭示了稻田土壤中主要的DNRA细菌中两种广泛存在但被忽视的N₂O产生途径,以及它们独特的同位素特征。这些发现为DNRA细菌在N₂O产生中的作用提供了新的见解,并强调了N₂O同位素特征在微生物N₂O源追踪中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a02/11633192/fecc308e01da/mbio.02540-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验