Rex Audrey N, Simpson Brent W, Bokinsky Gregory, Trent M Stephen
Department of Microbiology, College of Art and Sciences; University of Georgia, Athens, Georgia, USA.
Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA.
mBio. 2024 Dec 11;15(12):e0296924. doi: 10.1128/mbio.02969-24. Epub 2024 Oct 30.
The unique asymmetry of the Gram-negative outer membrane, with glycerophospholipids (GPLs) in the inner leaflet and lipopolysaccharide (LPS) in the outer leaflet, works to resist external stressors and prevent the entry of toxic compounds. Thus, GPL and LPS synthesis must be tightly controlled to maintain the integrity of this essential structure. We sought to decipher why organisms like possess two redundant pathways-PlsB and PlsX/Y-for synthesis of the GPL precursor lysophosphatidic acid (LPA). LPA is then converted by PlsC to the universal precursor for GPL synthesis, phosphatidic acid (PA). PlsB and PlsC are essential in , indicating they serve as the major pathway for PA synthesis. While loss of PlsX or PlsY individually has little consequence on the cell, the absence of both was lethal. To understand the synthetic lethality of this seemingly redundant PlsX/Y pathway, we performed a suppressor screen. Suppressor analysis indicated that ∆ requires increased levels of glycerol-3-phosphate (G3P), a GPL precursor. In agreement, ∆ required supplementation with G3P for survival. Furthermore, loss of PlsX dysregulated fatty acid synthesis, resulting in increased long-chain fatty acids. We show that although PlsX/Y together contribute to PA synthesis, they also contribute to the regulation of overall membrane biogenesis. Thus, synthetic lethality of ∆ is multifactorial, suggesting that PlsX/Y has been maintained as a redundant system to fine-tune the synthesis of major lipids and promote cell envelope homeostasis.IMPORTANCEGram-negative bacteria must maintain optimal ratios of glycerophospholipids and lipopolysaccharide within the cell envelope for viability. Maintenance of proper outer membrane asymmetry allows for resistance to toxins and antibiotics. Here, we describe additional roles of PlsX and PlsY in beyond lysophosphatidic acid synthesis, a key precursor of all glycerophospholipids. These findings suggest that PlsX and PlsY also play a larger role in impacting homeostasis of lipid synthesis.
革兰氏阴性菌外膜具有独特的不对称性,内膜层为甘油磷脂(GPLs),外膜层为脂多糖(LPS),这种结构有助于抵抗外部应激源并防止有毒化合物进入。因此,必须严格控制GPL和LPS的合成,以维持这一重要结构的完整性。我们试图弄清楚为什么像[具体生物名称未给出]这样的生物体拥有两条冗余途径——PlsB和PlsX/Y——用于合成GPL前体溶血磷脂酸(LPA)。然后,LPA由PlsC转化为GPL合成的通用前体磷脂酸(PA)。PlsB和PlsC在[具体生物名称未给出]中是必需的,这表明它们是PA合成的主要途径。虽然单独缺失PlsX或PlsY对细胞影响不大,但两者都缺失则是致命的。为了理解这条看似冗余的PlsX/Y途径的合成致死性,我们进行了一次抑制子筛选。抑制子分析表明,∆[具体菌株名称未给出]需要增加甘油-3-磷酸(G3P)的水平,G3P是一种GPL前体。与此一致的是,∆[具体菌株名称未给出]需要补充G3P才能存活。此外,PlsX的缺失会使脂肪酸合成失调,导致长链脂肪酸增加。我们发现,虽然PlsX/Y共同促进PA合成,但它们也有助于整体膜生物合成的调节。因此,∆[具体菌株名称未给出]的合成致死性是多因素的,这表明PlsX/Y作为一个冗余系统得以保留,以微调主要脂质的合成并促进细胞包膜的稳态。重要性革兰氏阴性菌必须在细胞膜内维持甘油磷脂和脂多糖的最佳比例才能存活。维持适当的外膜不对称性有助于抵抗毒素和抗生素。在这里,我们描述了PlsX和PlsY在[具体生物名称未给出]中除了作为所有甘油磷脂的关键前体溶血磷脂酸合成之外的其他作用。这些发现表明,PlsX和PlsY在影响脂质合成稳态方面也发挥着更大的作用。