Division of Biological Sciences, University of Washington, Bothell, Washington, USA.
Department of Biology, University of Washington, Seattle, Washington, USA.
mSphere. 2024 Nov 21;9(11):e0072324. doi: 10.1128/msphere.00723-24. Epub 2024 Oct 30.
cAMP plays an important role as a second messenger in the stage transition of various protozoan parasites. This signaling pathway relies on multiple effectors, such as protein kinase A (PKA), exchange protein activated by cAMP, and cAMP-response element binding protein transcription factors, to initiate signal transduction in humans. The genome only contains two adenylate cyclases (ACs), a single phosphodiesterase (PDE) and a single known PKA effector, and the specific functions of these components are not fully understood. In our previous research, we demonstrated the important role of AC2-dependent cAMP signaling in promoting the encystation program. Using the NanoBit technology, we emphasized the significance of AC2-dependent cAMP biosynthesis in regulating the dissociation of the PKA regulatory domain (PKAr) and PKA catalytic domain (PKAc). In this study, our objectives are twofold: first, we used the newly developed Split-Halo to examine subcellular interactions of PKAr and PKAc in ; and second, we investigated whether PKAc regulates encystation-specific proteins. Our findings revealed distinct subcellular locations where PKAr and PKAc interacted during the trophozoite stage, including the flagella, basal bodies, and cytoplasm. Upon exposure to encystation stimuli, the interaction shifted from the flagella to the cytosol. Knockdown of PKAc resulted in the downregulation of encystation-specific genes, leading to the production of fewer viable and water-resistant cysts indicating a role for PKA in the transcriptional regulation of encystation. These discoveries contribute to a deeper understanding of the cAMP signaling pathway and its important role in governing 's encystation process.
The precise timing of interactions and subcellular compartmentation play crucial roles in signal transduction. The co-immunoprecipitation assay (CO-IP) has long been utilized to validate protein-protein interactions; however, CO-IPs lack spatial and temporal resolutions. Our recent study used the NanoBit assay, which showcased the reversible protein-protein interaction between PKAr and PKAc in response to cAMP analogs and encystation stimuli. Expanding on this groundwork, this study employs the Split-Halo assay to uncover the subcellular compartments where the PKAr and PKAc protein-protein interactions take place and respond to encystation stimuli. Taken together, these molecular tools provide spatiotemporal information on the protein-protein interaction, which will be useful in the field.
cAMP 作为第二信使在各种原生动物寄生虫的阶段过渡中发挥重要作用。此信号通路依赖于多种效应物,如蛋白激酶 A(PKA)、cAMP 激活的交换蛋白和 cAMP 反应元件结合蛋白转录因子,以在人体中启动信号转导。基因组仅包含两个腺苷酸环化酶(AC)、一个单一的磷酸二酯酶(PDE)和一个已知的 PKA 效应物,这些成分的特定功能尚未完全理解。在我们之前的研究中,我们证明了 AC2 依赖性 cAMP 信号在促进包囊形成程序中的重要作用。使用 NanoBit 技术,我们强调了 AC2 依赖性 cAMP 生物合成在调节 PKA 调节域(PKAr)和 PKA 催化域(PKAc)解离中的重要性。在这项研究中,我们的目标有两个:首先,我们使用新开发的 Split-Halo 来检查 PKAr 和 PKAc 在 中的亚细胞相互作用;其次,我们研究了 PKAc 是否调节包囊形成特异性蛋白。我们的发现揭示了在滋养体阶段 PKAr 和 PKAc 相互作用的不同亚细胞位置,包括鞭毛、基体和细胞质。暴露于包囊形成刺激后,相互作用从鞭毛转移到细胞质。PKAc 的敲低导致包囊形成特异性基因下调,导致更少的有活力和耐水性囊形成,表明 PKA 在转录调控包囊形成中起作用。这些发现有助于更深入地了解 cAMP 信号通路及其在调控 的包囊形成过程中的重要作用。
相互作用和亚细胞区室化的精确时间在信号转导中起着至关重要的作用。共免疫沉淀(CO-IP)测定法长期以来一直被用于验证蛋白质-蛋白质相互作用;然而,CO-IPs 缺乏空间和时间分辨率。我们最近的研究使用 NanoBit 测定法,该测定法展示了 PKAr 和 PKAc 对 cAMP 类似物和包囊形成刺激的可逆蛋白-蛋白相互作用。在此基础上,本研究采用 Split-Halo 测定法揭示了 PKAr 和 PKAc 蛋白-蛋白相互作用发生的亚细胞区室,并对包囊形成刺激作出反应。综上所述,这些分子工具提供了关于蛋白质-蛋白质相互作用的时空信息,这将在该领域非常有用。