Suppr超能文献

基于蛋白质的力学超材料中的应变学习。

Strain learning in protein-based mechanical metamaterials.

机构信息

Department of Chemistry, University of Washington, Seattle, WA 98195.

POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, Univesidad del Pais Vasco/Euskal Herriko Univertsitatea UPV/EHU, Donostia-San Sebastián 20018, Spain.

出版信息

Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2407929121. doi: 10.1073/pnas.2407929121. Epub 2024 Oct 30.

Abstract

Mechanical deformation of polymer networks causes molecular-level motion and bond scission that ultimately lead to material failure. Mitigating this strain-induced loss in mechanical integrity is a significant challenge, especially in the development of active and shape-memory materials. We report the additive manufacturing of mechanical metamaterials made with a protein-based polymer that undergo a unique stiffening and strengthening behavior after shape recovery cycles. We utilize a bovine serum albumin-based polymer and show that cyclic tension and recovery experiments on the neat resin lead to a ~60% increase in the strength and stiffness of the material. This is attributed to the release of stored length in the protein mechanophores during plastic deformation that is preserved after the recovery cycle, thereby leading to a "strain learning" behavior. We perform compression experiments on three-dimensionally printed lattice metamaterials made from this protein-based polymer and find that, in certain lattices, the strain learning effect is not only preserved but amplified, causing up to a 2.5× increase in the stiffness of the recovered metamaterial. These protein-polymer strain learning metamaterials offer a unique platform for materials that can autonomously remodel after being deformed, mimicking the remodeling processes that occur in natural materials.

摘要

聚合物网络的机械变形会导致分子水平的运动和键的断裂,最终导致材料失效。减轻这种应变引起的机械完整性损失是一个重大挑战,特别是在活性和形状记忆材料的开发中。我们报告了使用基于蛋白质的聚合物制造的机械超材料的增材制造,这些超材料在形状恢复循环后表现出独特的增强和强化行为。我们利用牛血清白蛋白基聚合物,并表明在纯树脂上进行的循环张力和恢复实验导致材料的强度和刚度提高了约 60%。这归因于在塑性变形过程中蛋白质机械试剂中储存长度的释放,并且在恢复循环后得以保留,从而导致“应变学习”行为。我们对由这种基于蛋白质的聚合物制成的三维打印晶格超材料进行了压缩实验,发现,在某些晶格中,应变学习效应不仅得以保留,而且还得到了放大,导致恢复后的超材料的刚度增加了高达 2.5 倍。这些基于蛋白质的聚合物应变学习超材料为可以在变形后自动重塑的材料提供了一个独特的平台,模拟了天然材料中发生的重塑过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a7d/11551383/d853f3233df6/pnas.2407929121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验