Sargent Ashley M, Smith Kevin A, Du Kai, Xu Xianghan, Cheong Sang-Wook, Gilbert Corder Stephanie N, Bechtel Hans A, Musfeldt Janice L
Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States.
Keck Center for Quantum Magnetism and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States.
Nano Lett. 2024 Nov 13;24(45):14460-14465. doi: 10.1021/acs.nanolett.4c04483. Epub 2024 Oct 30.
We combined synchrotron-based near field infrared spectroscopy and atomic force microscopy to image the properties of ferroelastic domain walls in SrSnO. Although frequency shifts at the walls are near the limit of our sensitivity, we can confirm semiconducting rather than metallic character and widths between 20 and 60 nm. The latter is significantly narrower than in other hybrid improper ferroelectrics like CaTiO. We attribute this trend to the softer lattice in SrSnO, which may enable the octahedral tilt and rotation order parameters to evolve more quickly across the wall without significantly increased strain. These findings are crucial for the understanding of phononic properties at interfaces and the development of domain wall-based devices.
我们结合基于同步加速器的近场红外光谱和原子力显微镜来成像SrSnO中铁弹性畴壁的特性。尽管畴壁处的频移接近我们的灵敏度极限,但我们可以确认其具有半导体而非金属特性,且宽度在20至60纳米之间。后者明显比其他混合非本征铁电体(如CaTiO)中的更窄。我们将这种趋势归因于SrSnO中更软的晶格,这可能使八面体倾斜和旋转序参量在畴壁上能更快地演化,而不会显著增加应变。这些发现对于理解界面处的声子特性以及基于畴壁的器件的开发至关重要。