Parra Raad Jaime, Lock Daniel, Liu Yi-Yi, Solomon Mark, Peralta Laura, Christensen-Jeffries Kirsten
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Dec;71(12: Breaking the Resolution Barrier in Ultrasound):1833-1843. doi: 10.1109/TUFFC.2024.3484770. Epub 2025 Jan 8.
Super-resolution ultrasound (SRUS) visualizes microvasculature beyond the ultrasound (US) diffraction limit (wavelength( )/2) by localizing and tracking spatially isolated microbubble (MB) contrast agents. SRUS phantoms typically consist of simple tube structures, where diameter channels below m are not available. Furthermore, these phantoms are generally fragile and unstable, have limited ground truth validation, and their simple structure limits the evaluation of SRUS algorithms. To aid SRUS development, robust and durable phantoms with known and physiologically relevant microvasculature are needed for repeatable SRUS testing. This work proposes a method to fabricate durable microvascular phantoms that allow optical gauging for SRUS validation. The methodology used a microvasculature negative print embedded in a Polydimethylsiloxane (PDMS) to fabricate a microvascular phantom. Branching microvascular phantoms with variable microvascular density were demonstrated with optically validated vessel diameters down to m ( ; m). SRUS imaging was performed and validated with optical measurements. The average SRUS error was m ( ) with a standard deviation error of m. The average error decreased to m ( ) once the number of localized MBs surpassed 1000 per estimated diameter. In addition, less than 10% variance of acoustic and optical properties and the mechanical toughness of the phantoms measured a year after fabrication demonstrated their long-term durability. This work presents a method to fabricate durable and optically validated complex microvascular phantoms which can be used to quantify SRUS performance and facilitate its further development.
超分辨率超声(SRUS)通过定位和跟踪空间隔离的微泡(MB)造影剂,使超声(US)衍射极限(波长()/2)之外的微血管可视化。SRUS体模通常由简单的管状结构组成,其中直径小于m的通道不可用。此外,这些体模通常易碎且不稳定,具有有限的地面真值验证,并且其简单结构限制了SRUS算法的评估。为了帮助SRUS发展,需要具有已知且与生理相关的微血管的坚固耐用体模用于可重复的SRUS测试。这项工作提出了一种制造耐用微血管体模的方法,该体模允许进行光学测量以验证SRUS。该方法使用嵌入聚二甲基硅氧烷(PDMS)中的微血管负片来制造微血管体模。展示了具有可变微血管密度的分支微血管体模,其经光学验证的血管直径低至m(;m)。进行了SRUS成像并用光学测量进行了验证。平均SRUS误差为m(),标准偏差误差为m。一旦每个估计直径的局部MB数量超过1000,平均误差降至m()。此外,制造后一年测量的体模的声学和光学特性以及机械韧性的方差小于10%,证明了它们的长期耐用性。这项工作提出了一种制造耐用且经光学验证的复杂微血管体模的方法,该体模可用于量化SRUS性能并促进其进一步发展。