Suppr超能文献

一种计算模型揭示了咽侧壁和软腭中不同的肌肉激活如何区分腭咽闭合模式。

A Computational Model Reveals How Varying Muscle Activation in the Lateral Pharyngeal Wall and Soft Palate Differentiates Velopharyngeal Closure Patterns.

作者信息

DiSalvo Matthew D, Blemker Silvia S, Mason Kazlin N

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville.

Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville.

出版信息

J Speech Lang Hear Res. 2024 Dec 9;67(12):4663-4675. doi: 10.1044/2024_JSLHR-24-00353. Epub 2024 Oct 30.

Abstract

PURPOSE

Finite element (FE) models have emerged as a powerful method to study biomechanical complexities of velopharyngeal (VP) function. However, existing models have overlooked the active contributions of the lateral pharyngeal wall (LPW) in VP closure. This study aimed to develop and validate a more comprehensive FE model of VP closure to include the superior pharyngeal constrictor (SPC) muscle within the LPW as an active component of VP closure.

METHOD

The geometry of the velum and the lateral and posterior pharyngeal walls with biomechanical activation governed by the levator veli palatini (LVP) and SPC muscles were incorporated into an FE model of VP closure. Differing muscle activations were employed to identify the impact of anatomic contributions from the SPC muscle, LVP muscle, and/or velum for achieving VP closure. The model was validated against normative magnetic resonance imaging data at rest and during speech production.

RESULTS

A highly accurate and validated biomechanical model of VP function was developed. Differing combinations and activation of muscles within the LPW and velum provided insight into the relationship between muscle activation and closure patterns, with objective quantification of anatomic change necessary to achieve VP closure.

CONCLUSIONS

This model is the first to include the anatomic properties and active contributions of the LPW and SPC muscle for achieving VP closure. Now validated, this method can be utilized to build robust, comprehensive models to understand VP dysfunction. This represents an important advancement in patient-specific modeling of VP function and provides a foundation to support development of computational tools to meet clinical demand.

摘要

目的

有限元(FE)模型已成为研究腭咽(VP)功能生物力学复杂性的有力方法。然而,现有模型忽略了咽侧壁(LPW)在VP闭合中的主动作用。本研究旨在开发并验证一个更全面的VP闭合有限元模型,将LPW内的咽上缩肌(SPC)纳入其中作为VP闭合的主动成分。

方法

将由腭帆提肌(LVP)和SPC肌肉控制生物力学激活的腭部以及咽侧壁和后壁的几何结构纳入VP闭合有限元模型。采用不同的肌肉激活方式来确定SPC肌肉、LVP肌肉和/或腭部的解剖学贡献对实现VP闭合的影响。该模型根据静息和言语产生时的标准磁共振成像数据进行了验证。

结果

开发了一个高度准确且经过验证的VP功能生物力学模型。LPW和腭部内不同的肌肉组合及激活方式为肌肉激活与闭合模式之间的关系提供了见解,同时对实现VP闭合所需的解剖学变化进行了客观量化。

结论

该模型首次纳入了LPW和SPC肌肉在实现VP闭合方面的解剖学特性和主动作用。现已验证,此方法可用于构建强大、全面的模型以了解VP功能障碍。这代表了VP功能患者特异性建模的一项重要进展,并为支持开发满足临床需求的计算工具奠定了基础。

相似文献

7
Finite element analysis animated simulation of velopharyngeal closure.腭咽闭合的有限元分析动画模拟
Cleft Palate Craniofac J. 2012 Jan;49(1):44-50. doi: 10.1597/10-131. Epub 2011 Mar 2.
9
Magnetic resonance imaging of the levator veli palatini muscle during speech.说话时腭帆提肌的磁共振成像
Cleft Palate Craniofac J. 2002 Mar;39(2):130-44. doi: 10.1597/1545-1569_2002_039_0130_mriotl_2.0.co_2.
10
Levator veli palatini muscle activity in relation to intranasal air pressure variation.腭帆提肌活动与鼻内气压变化的关系
Cleft Palate Craniofac J. 1993 Jul;30(4):361-8. doi: 10.1597/1545-1569_1993_030_0361_lvpmai_2.3.co_2.

本文引用的文献

7
The Reliability of Visual Ratings of Velopharyngeal Physiology for Speech.言语时软腭功能的视觉评估的可靠性。
Cleft Palate Craniofac J. 2021 May;58(5):546-556. doi: 10.1177/1055665620961911. Epub 2020 Oct 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验