Harini Karthick, Girigoswami Koyeli, Vajagathali Mohammed, Bose Debosreeta, Thirumalai Anbazhagan, Kiran Venkatakrishnan, Durgadevi Pazhani, Girigoswami Agnishwar
Medical Bionanotechnology, Faculty of Allied Health Sciences (FAHS), Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN-603103, India.
Department of Chemistry, Amity Institute of Applied Sciences, Amity University Kolkata, Newtown Rajarhat, West Bengal, 700035, India.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Apr;398(4):4373-4392. doi: 10.1007/s00210-024-03549-y. Epub 2024 Oct 30.
Bupropion (Bpn), an FDA-approved NDRI (norepinephrine-dopamine reuptake inhibitor), poses risks of seizures and liver failure due to its stimulant properties, necessitating the development of alternative formulations. This research aims to develop a Bpn nanoformulation within bilosomal vesicles to enhance therapeutic efficacy at lower doses, using three bile salts, span 20 surfactants, and cholesterol via thin-film hydration. Optimization of bilosomal stability is achieved by trialing various ingredient concentrations, identifying a surfactant-to-cholesterol-to-bile salt ratio of 1.5:1:0.17 µM, with sodium cholate (B.SC) yielding the most stable system. Bpn encapsulated in the optimized bilosomal vesicle (Bpn@B.SC ) demonstrated high encapsulation efficiency of 78.142 ± 11.07% and drug-retaining capacity compared to the niosomal system. The in vitro and in vivo toxicity profile of the product is superior to the niosomal system and shows negligible toxicity with a viability rate of not less than 95%, with a sustained release profile in artificial cerebrospinal fluid (ACSF). In vivo, behavioral analysis on zebrafish revealed that Bpn@B.SC treatment more effectively improved depressive behavior compared to free Bpn and other treatments, evidenced by increased exploration rates and reduced irregular movements, as shown through statistical and trajectory data. Hence, it is concluded that the bilosomal structure, compared to the niosomal system, is a better carrier of drugs to achieve brain delivery and improve mood.
安非他酮(Bpn)是一种经美国食品药品监督管理局(FDA)批准的去甲肾上腺素-多巴胺再摄取抑制剂(NDRI),因其具有刺激特性,存在引发癫痫和肝衰竭的风险,因此需要开发替代制剂。本研究旨在通过薄膜水化法,利用三种胆盐、司盘20表面活性剂和胆固醇,在双分子层脂质体囊泡中开发一种安非他酮纳米制剂,以在较低剂量下提高治疗效果。通过试验各种成分浓度来优化双分子层脂质体的稳定性,确定表面活性剂与胆固醇与胆盐的比例为1.5:1:0.17微摩尔,其中胆酸钠(B.SC)产生的系统最稳定。与非离子型脂质体系统相比,包裹在优化后的双分子层脂质体囊泡(Bpn@B.SC)中的安非他酮显示出78.142±11.07%的高包封率和药物保留能力。该产品的体外和体内毒性特征优于非离子型脂质体系统,毒性可忽略不计,存活率不低于95%,在人工脑脊液(ACSF)中具有缓释特性。在体内,对斑马鱼的行为分析表明,与游离安非他酮和其他治疗相比,Bpn@B.SC治疗更有效地改善了抑郁行为,这通过统计和轨迹数据显示的探索率增加和不规则运动减少得到证明。因此,可以得出结论,与非离子型脂质体系统相比,双分子层脂质体结构是实现脑内给药和改善情绪的更好药物载体。