Suppr超能文献

塑料修复的创新:催化降解和机器学习的可持续解决方案。

Innovations in plastic remediation: Catalytic degradation and machine learning for sustainable solutions.

机构信息

Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India.

Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India.

出版信息

J Contam Hydrol. 2024 Nov;267:104449. doi: 10.1016/j.jconhyd.2024.104449. Epub 2024 Oct 24.

Abstract

Plastic pollution is an extreme environmental threat, necessitating novel restoration solutions. The present investigation investigates the integration of machine learning (ML) techniques with catalytic degradation processes to improve plastic waste management. Catalytic degradation is emphasized for its efficiency and selectivity, while several machine learning techniques are assessed for their capacity to enhance these processes. The review goes into ML applications for forecasting catalyst performance, determining appropriate reaction conditions, and refining catalyst design to improve overall process performance. Briefing about the reinforcement, supervised, and unsupervised learning algorithms that handle all complex data and parameters is explained. A techno-economic study is provided, evaluating these ML-driven system's performance, affordability, and environmental sustainability. The paper reviews how the novel method integrating ML with catalytic degradation for plastic cleanup might alter the process, providing new insights into scalable and sustainable solutions. This review emphasizes the usefulness of these modern strategies in tackling the urgent problem of plastic pollution by offering a comprehensive examination.

摘要

塑料污染是一种极端的环境威胁,需要创新性的修复解决方案。本研究调查了将机器学习 (ML) 技术与催化降解过程相结合,以改进塑料废物管理。催化降解因其效率和选择性而受到重视,同时评估了几种机器学习技术,以评估它们提高这些过程的能力。该综述深入探讨了 ML 在预测催化剂性能、确定合适的反应条件以及改进催化剂设计以提高整体工艺性能方面的应用。简要介绍了处理所有复杂数据和参数的强化学习、监督学习和无监督学习算法。提供了一项技术经济研究,评估这些基于 ML 的系统的性能、可负担性和环境可持续性。本文综述了将 ML 与催化降解相结合用于塑料清理的新方法如何改变这一过程,为可扩展和可持续的解决方案提供了新的见解。该综述强调了这些现代策略在解决塑料污染这一紧迫问题方面的有用性,全面探讨了这一问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验