文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过多尺度和多模态计算建模理解远端结肠和直肠中的机械转导。

Understanding mechanotransduction in the distal colon and rectum via multiscale and multimodal computational modeling.

作者信息

Shokrani Amirhossein, Almasi Ashkan, Feng Bin, Pierce David M

机构信息

Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA.

Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.

出版信息

J Mech Behav Biomed Mater. 2024 Dec;160:106771. doi: 10.1016/j.jmbbm.2024.106771. Epub 2024 Oct 18.


DOI:10.1016/j.jmbbm.2024.106771
PMID:39476532
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11585082/
Abstract

Visceral pain in the large bowel is a defining symptom of irritable bowel syndrome (IBS) and the primary reason that patients visit gastroenterologists. This pain is reliably triggered by mechanical distension of the distal colon and rectum (colorectum). Consequently, the process of mechanotransduction by sensory afferents, responsible for translating mechanical colorectal stimuli into neural action potentials, plays a central role in IBS-related bowel pain. In this study, we aim to enhance our understanding of colorectal mechanotransduction by combining experimental findings in colorectal biomechanics and afferent neural encoding within a comprehensive computational simulation framework. To achieve this, we implemented a three-layered, fiber-reinforced finite element model that accurately replicates the nonlinear, heterogeneous, and anisotropic mechanical characteristics of the mouse colorectum. This model facilitates the computation of local mechanical stresses and strains around individual afferent endings, which have diameters on the micron-scale. We then integrated a neural membrane model to simulate the encoding of action potentials by afferent nerves in response to microscopic stresses and strains along the afferent endings. Our multiscale simulation framework enables the assessment of three hypotheses regarding the mechanical gating of action potential generation: (1) axial stress dominates mechanical gating of mechanosensitive channels, (2) both axial and circumferential stresses contribute, and (3) membrane shear stress dominates. Additionally, we explore how the orientation of afferent endings impacts neural encoding properties. This computational framework not only allows for the virtual investigation of colorectal mechanotransduction in the context of prolonged visceral hypersensitivity but can also guide the development of new experimental studies aimed at uncovering the neural and biomechanical mechanisms underlying IBS-related bowel pain.

摘要

大肠内脏痛是肠易激综合征(IBS)的一个明确症状,也是患者就诊于胃肠病学家的主要原因。这种疼痛可被机械性扩张远端结肠和直肠(结肠直肠)可靠地触发。因此,负责将机械性结肠直肠刺激转化为神经动作电位的感觉传入的机械转导过程在 IBS 相关的肠痛中起着核心作用。在这项研究中,我们旨在通过将结肠直肠生物力学中的实验发现和感觉传入神经编码纳入综合计算模拟框架,来增强对结肠直肠机械转导的理解。为了实现这一目标,我们实施了一个三层纤维增强有限元模型,该模型准确地复制了小鼠结肠直肠的非线性、非均匀和各向异性的力学特性。该模型有助于计算围绕单个传入末梢的局部机械应力和应变,传入末梢的直径在微米级。然后,我们整合了一个神经膜模型,以模拟传入神经对传入末梢处微观应力和应变的动作电位编码。我们的多尺度模拟框架能够评估关于动作电位产生的机械门控的三个假设:(1)轴向应力主导机械敏感通道的机械门控,(2)轴向和周向应力都有贡献,(3)膜剪切应力占主导。此外,我们还探讨了传入末梢的取向如何影响神经编码特性。这个计算框架不仅允许在长时间内脏高敏的情况下对结肠直肠机械转导进行虚拟研究,还可以指导旨在揭示 IBS 相关肠痛的神经和生物力学机制的新的实验研究的开展。

相似文献

[1]
Understanding mechanotransduction in the distal colon and rectum via multiscale and multimodal computational modeling.

J Mech Behav Biomed Mater. 2024-12

[2]
Visceral pain from colon and rectum: the mechanotransduction and biomechanics.

J Neural Transm (Vienna). 2020-4

[3]
Computational Modeling of Mouse Colorectum Capturing Longitudinal and Through-thickness Biomechanical Heterogeneity.

J Mech Behav Biomed Mater. 2021-1

[4]
Predicting the micromechanics of embedded nerve fibers using a novel three-layered model of mouse distal colon and rectum.

J Mech Behav Biomed Mater. 2022-3

[5]
The Macro- and Micro-Mechanics of the Colon and Rectum II: Theoretical and Computational Methods.

Bioengineering (Basel). 2020-11-25

[6]
Differential biomechanical properties of mouse distal colon and rectum innervated by the splanchnic and pelvic afferents.

Am J Physiol Gastrointest Liver Physiol. 2019-1-31

[7]
Load-bearing function of the colorectal submucosa and its relevance to visceral nociception elicited by mechanical stretch.

Am J Physiol Gastrointest Liver Physiol. 2019-7-3

[8]
Toward Elucidating the Physiological Impacts of Residual Stresses in the Colorectum.

J Biomech Eng. 2022-1-1

[9]
The heterogeneous morphology of networked collagen in distal colon and rectum of mice quantified via nonlinear microscopy.

J Mech Behav Biomed Mater. 2021-1

[10]
Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings.

J Neurophysiol. 2015-4-1

本文引用的文献

[1]
Corrigendum to "Predicting the micromechanics of embedded nerve fibers using a novel three-layered model of mouse distal colon and rectum" [J. Mech. Beha. Biomed. Mater. 127 (2022) 105083].

J Mech Behav Biomed Mater. 2024-6

[2]
A chemo-mechano-biological modeling framework for cartilage evolving in health, disease, injury, and treatment.

Comput Methods Programs Biomed. 2023-4

[3]
Predicting the micromechanics of embedded nerve fibers using a novel three-layered model of mouse distal colon and rectum.

J Mech Behav Biomed Mater. 2022-3

[4]
Tetrodotoxin: A New Strategy to Treat Visceral Pain?

Toxins (Basel). 2021-7-16

[5]
Toward Elucidating the Physiological Impacts of Residual Stresses in the Colorectum.

J Biomech Eng. 2022-1-1

[6]
Optical clearing reveals TNBS-induced morphological changes of VGLUT2-positive nerve fibers in mouse colorectum.

Am J Physiol Gastrointest Liver Physiol. 2021-4-1

[7]
The heterogeneous morphology of networked collagen in distal colon and rectum of mice quantified via nonlinear microscopy.

J Mech Behav Biomed Mater. 2021-1

[8]
A comparative study of hyperelastic constitutive models for colonic tissue fitted to multiaxial experimental testing.

J Mech Behav Biomed Mater. 2020-2

[9]
The model of local axon homeostasis - explaining the role and regulation of microtubule bundles in axon maintenance and pathology.

Neural Dev. 2019-11-9

[10]
Visceral pain from colon and rectum: the mechanotransduction and biomechanics.

J Neural Transm (Vienna). 2020-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索