Shokrani Amirhossein, Almasi Ashkan, Feng Bin, Pierce David M
Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA.
Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
J Mech Behav Biomed Mater. 2024 Dec;160:106771. doi: 10.1016/j.jmbbm.2024.106771. Epub 2024 Oct 18.
Visceral pain in the large bowel is a defining symptom of irritable bowel syndrome (IBS) and the primary reason that patients visit gastroenterologists. This pain is reliably triggered by mechanical distension of the distal colon and rectum (colorectum). Consequently, the process of mechanotransduction by sensory afferents, responsible for translating mechanical colorectal stimuli into neural action potentials, plays a central role in IBS-related bowel pain. In this study, we aim to enhance our understanding of colorectal mechanotransduction by combining experimental findings in colorectal biomechanics and afferent neural encoding within a comprehensive computational simulation framework. To achieve this, we implemented a three-layered, fiber-reinforced finite element model that accurately replicates the nonlinear, heterogeneous, and anisotropic mechanical characteristics of the mouse colorectum. This model facilitates the computation of local mechanical stresses and strains around individual afferent endings, which have diameters on the micron-scale. We then integrated a neural membrane model to simulate the encoding of action potentials by afferent nerves in response to microscopic stresses and strains along the afferent endings. Our multiscale simulation framework enables the assessment of three hypotheses regarding the mechanical gating of action potential generation: (1) axial stress dominates mechanical gating of mechanosensitive channels, (2) both axial and circumferential stresses contribute, and (3) membrane shear stress dominates. Additionally, we explore how the orientation of afferent endings impacts neural encoding properties. This computational framework not only allows for the virtual investigation of colorectal mechanotransduction in the context of prolonged visceral hypersensitivity but can also guide the development of new experimental studies aimed at uncovering the neural and biomechanical mechanisms underlying IBS-related bowel pain.
大肠内脏痛是肠易激综合征(IBS)的一个明确症状,也是患者就诊于胃肠病学家的主要原因。这种疼痛可被机械性扩张远端结肠和直肠(结肠直肠)可靠地触发。因此,负责将机械性结肠直肠刺激转化为神经动作电位的感觉传入的机械转导过程在 IBS 相关的肠痛中起着核心作用。在这项研究中,我们旨在通过将结肠直肠生物力学中的实验发现和感觉传入神经编码纳入综合计算模拟框架,来增强对结肠直肠机械转导的理解。为了实现这一目标,我们实施了一个三层纤维增强有限元模型,该模型准确地复制了小鼠结肠直肠的非线性、非均匀和各向异性的力学特性。该模型有助于计算围绕单个传入末梢的局部机械应力和应变,传入末梢的直径在微米级。然后,我们整合了一个神经膜模型,以模拟传入神经对传入末梢处微观应力和应变的动作电位编码。我们的多尺度模拟框架能够评估关于动作电位产生的机械门控的三个假设:(1)轴向应力主导机械敏感通道的机械门控,(2)轴向和周向应力都有贡献,(3)膜剪切应力占主导。此外,我们还探讨了传入末梢的取向如何影响神经编码特性。这个计算框架不仅允许在长时间内脏高敏的情况下对结肠直肠机械转导进行虚拟研究,还可以指导旨在揭示 IBS 相关肠痛的神经和生物力学机制的新的实验研究的开展。
J Mech Behav Biomed Mater. 2024-12
J Neural Transm (Vienna). 2020-4
J Mech Behav Biomed Mater. 2021-1
J Mech Behav Biomed Mater. 2022-3
Bioengineering (Basel). 2020-11-25
Am J Physiol Gastrointest Liver Physiol. 2019-1-31
Am J Physiol Gastrointest Liver Physiol. 2019-7-3
J Biomech Eng. 2022-1-1
J Mech Behav Biomed Mater. 2021-1
Comput Methods Programs Biomed. 2023-4
J Mech Behav Biomed Mater. 2022-3
Toxins (Basel). 2021-7-16
J Biomech Eng. 2022-1-1
Am J Physiol Gastrointest Liver Physiol. 2021-4-1
J Mech Behav Biomed Mater. 2021-1
J Mech Behav Biomed Mater. 2020-2
J Neural Transm (Vienna). 2020-4