Suppr超能文献

NaV1.6在拉伸敏感型大肠传入神经末梢动作电位起始中起关键作用的实验与计算证据。

Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings.

作者信息

Feng Bin, Zhu Yi, La Jun-Ho, Wills Zachary P, Gebhart G F

机构信息

Department of Anesthesiology, Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and

Department of Anesthesiology, Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and.

出版信息

J Neurophysiol. 2015 Apr 1;113(7):2618-34. doi: 10.1152/jn.00717.2014. Epub 2015 Feb 4.

Abstract

Stretch-sensitive afferents comprise ∼33% of the pelvic nerve innervation of mouse colorectum, which are activated by colorectal distension and encode visceral nociception. Stretch-sensitive colorectal afferent endings respond tonically to stepped or ramped colorectal stretch, whereas dissociated colorectal dorsal root ganglion neurons generally fail to spike repetitively upon stepped current stimulation. The present study investigated this difference in the neural encoding characteristics between the soma and afferent ending using pharmacological approaches in an in vitro mouse colon-nerve preparation and complementary computational simulations. Immunohistological staining and Western blots revealed the presence of voltage-gated sodium channel (NaV) 1.6 and NaV1.7 at sensory neuronal endings in mouse colorectal tissue. Responses of stretch-sensitive colorectal afferent endings were significantly reduced by targeting NaV1.6 using selective antagonists (μ-conotoxin GIIIa and μ-conotoxin PIIIa) or tetrodotoxin. In contrast, neither selective NaV1.8 (A803467) nor NaV1.7 (ProTX-II) antagonists attenuated afferent responses to stretch. Computational simulation of a colorectal afferent ending that incorporated independent Markov models for NaV1.6 and NaV1.7, respectively, recapitulated the experimental findings, suggesting a necessary role for NaV1.6 in encoding tonic spiking by stretch-sensitive afferents. In addition, computational simulation of a dorsal root ganglion soma showed that, by adding a NaV1.6 conductance, a single-spiking neuron was converted into a tonic spiking one. These results suggest a mechanism/channel to explain the difference in neural encoding characteristics between afferent somata and sensory endings, likely caused by differential expression of ion channels (e.g., NaV1.6) at different parts of the neuron.

摘要

对拉伸敏感的传入神经纤维约占小鼠结肠直肠盆腔神经支配的33%,它们可被结肠直肠扩张激活并编码内脏痛觉。对拉伸敏感的结肠直肠传入神经末梢对阶梯式或斜坡式结肠直肠拉伸产生持续性反应,而分离的结肠直肠背根神经节神经元在阶梯式电流刺激下通常无法重复放电。本研究使用体外小鼠结肠-神经制备方法和互补的计算模拟,采用药理学方法研究了躯体和传入神经末梢之间神经编码特征的这种差异。免疫组织化学染色和蛋白质免疫印迹显示,小鼠结肠直肠组织中感觉神经元末梢存在电压门控钠通道(NaV)1.6和NaV1.7。使用选择性拮抗剂(μ-芋螺毒素GIIIa和μ-芋螺毒素PIIIa)或河豚毒素靶向NaV1.6可显著降低对拉伸敏感的结肠直肠传入神经末梢的反应。相比之下,选择性NaV1.8(A803467)和NaV1.7(ProTX-II)拮抗剂均未减弱传入神经对拉伸的反应。分别结合NaV1.6和NaV1.7独立马尔可夫模型的结肠直肠传入神经末梢的计算模拟重现了实验结果,表明NaV1.6在对拉伸敏感的传入神经纤维编码持续性放电中起必要作用。此外,背根神经节躯体的计算模拟表明,通过添加NaV1.6电导,单峰神经元可转变为持续放电神经元。这些结果提示了一种机制/通道来解释传入躯体和感觉末梢之间神经编码特征的差异,这可能是由神经元不同部位离子通道(如NaV1.6)的差异表达所致。

相似文献

2
Distribution of TTX-sensitive voltage-gated sodium channels in primary sensory endings of mammalian muscle spindles.
J Neurophysiol. 2017 Apr 1;117(4):1690-1701. doi: 10.1152/jn.00889.2016. Epub 2017 Jan 25.
3
Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum.
Am J Physiol Gastrointest Liver Physiol. 2010 Mar;298(3):G402-9. doi: 10.1152/ajpgi.00487.2009. Epub 2010 Jan 14.
5
Na 1.6 regulates excitability of mechanosensitive sensory neurons.
J Physiol. 2019 Jul;597(14):3751-3768. doi: 10.1113/JP278148. Epub 2019 May 13.
6
Modulation of peripheral Na(+) channels and neuronal firing by n-butyl-p-aminobenzoate.
Eur J Pharmacol. 2014 Mar 15;727:158-66. doi: 10.1016/j.ejphar.2014.01.036. Epub 2014 Jan 30.
7
Sodium channel diversity in the vestibular ganglion: NaV1.5, NaV1.8, and tetrodotoxin-sensitive currents.
J Neurophysiol. 2016 May 1;115(5):2536-55. doi: 10.1152/jn.00902.2015. Epub 2016 Mar 2.
8
Sodium Channel Na1.8 Underlies TTX-Resistant Axonal Action Potential Conduction in Somatosensory C-Fibers of Distal Cutaneous Nerves.
J Neurosci. 2017 May 17;37(20):5204-5214. doi: 10.1523/JNEUROSCI.3799-16.2017. Epub 2017 Apr 27.
9
Contribution of tetrodotoxin-sensitive, voltage-gated sodium channels (Na1) to action potential discharge from mouse esophageal tension mechanoreceptors.
Am J Physiol Regul Integr Comp Physiol. 2021 Nov 1;321(5):R672-R686. doi: 10.1152/ajpregu.00199.2021. Epub 2021 Sep 15.

引用本文的文献

1
Understanding mechanotransduction in the distal colon and rectum via multiscale and multimodal computational modeling.
J Mech Behav Biomed Mater. 2024 Dec;160:106771. doi: 10.1016/j.jmbbm.2024.106771. Epub 2024 Oct 18.
2
Blocking Aδ- and C-fiber neural transmission by sub-kilohertz peripheral nerve stimulation.
Front Neurosci. 2024 Jul 15;18:1404903. doi: 10.3389/fnins.2024.1404903. eCollection 2024.
3
Sex differences in zymosan-induced behavioral visceral hypersensitivity and colorectal afferent sensitization.
Am J Physiol Gastrointest Liver Physiol. 2024 Feb 1;326(2):G133-G146. doi: 10.1152/ajpgi.00081.2023. Epub 2023 Dec 5.
4
The role of mechanosensitive ion channels in the gastrointestinal tract.
Front Physiol. 2022 Aug 19;13:904203. doi: 10.3389/fphys.2022.904203. eCollection 2022.
5
Engineering of a Spider Peptide Conserved Structure-Function Traits Optimizes Sodium Channel Inhibition and Anti-Nociception .
Front Mol Biosci. 2021 Sep 21;8:742457. doi: 10.3389/fmolb.2021.742457. eCollection 2021.
6
Targeting Two-Pore-Domain Potassium Channels by Mechanical Stretch Instantaneously Modulates Action Potential Transmission in Mouse Sciatic Nerves.
ACS Chem Neurosci. 2021 Oct 6;12(19):3558-3566. doi: 10.1021/acschemneuro.1c00052. Epub 2021 Aug 22.
7
Tetrodotoxin: A New Strategy to Treat Visceral Pain?
Toxins (Basel). 2021 Jul 16;13(7):496. doi: 10.3390/toxins13070496.
8
A review on ultrasonic neuromodulation of the peripheral nervous system: enhanced or suppressed activities?
Appl Sci (Basel). 2019 Apr 2;9(8). doi: 10.3390/app9081637. Epub 2019 Apr 19.
9
The physiological function of different voltage-gated sodium channels in pain.
Nat Rev Neurosci. 2021 May;22(5):263-274. doi: 10.1038/s41583-021-00444-w. Epub 2021 Mar 29.
10
Optical clearing reveals TNBS-induced morphological changes of VGLUT2-positive nerve fibers in mouse colorectum.
Am J Physiol Gastrointest Liver Physiol. 2021 Apr 1;320(4):G644-G657. doi: 10.1152/ajpgi.00363.2020. Epub 2021 Feb 3.

本文引用的文献

1
The bile acid receptor TGR5 activates the TRPA1 channel to induce itch in mice.
Gastroenterology. 2014 Dec;147(6):1417-28. doi: 10.1053/j.gastro.2014.08.042. Epub 2014 Sep 3.
3
Modeling activity-dependent changes of axonal spike conduction in primary afferent C-nociceptors.
J Neurophysiol. 2014 May;111(9):1721-35. doi: 10.1152/jn.00777.2012. Epub 2013 Dec 26.
4
Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization.
Am J Physiol Gastrointest Liver Physiol. 2013 Nov;305(9):G638-48. doi: 10.1152/ajpgi.00180.2013. Epub 2013 Aug 29.
6
Activation of guanylate cyclase-C attenuates stretch responses and sensitization of mouse colorectal afferents.
J Neurosci. 2013 Jun 5;33(23):9831-9. doi: 10.1523/JNEUROSCI.5114-12.2013.
7
Connection between oligomeric state and gating characteristics of mechanosensitive ion channels.
PLoS Comput Biol. 2013;9(5):e1003055. doi: 10.1371/journal.pcbi.1003055. Epub 2013 May 16.
9
Spatial mismatch between the Na+ flux and spike initiation in axon initial segment.
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4051-6. doi: 10.1073/pnas.1215125110. Epub 2013 Jan 22.
10
A novel mechanism for gut barrier dysfunction by dietary fat: epithelial disruption by hydrophobic bile acids.
Am J Physiol Gastrointest Liver Physiol. 2013 Feb 1;304(3):G227-34. doi: 10.1152/ajpgi.00267.2012. Epub 2012 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验