Suppr超能文献

一种用于高性能锂离子电池的具有高热稳定性和阻燃性的细菌纤维素复合隔膜。

A bacterial cellulose composite separator with high thermal stability and flame retardancy for high-performance lithium ion batteries.

作者信息

Hu Xiangming, Han Guoyu, Deng Yurui, Yang Zhiyuan, Wei Xiaoxuan, Xu Hengyu, Zhang Zhijun

机构信息

College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Mining Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.

College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.

出版信息

J Colloid Interface Sci. 2025 Feb;679(Pt B):633-642. doi: 10.1016/j.jcis.2024.10.123. Epub 2024 Oct 24.

Abstract

Separators play a crucial role in enhancing the safety of lithium-ion batteries (LIBs); however, commercial polyolefin separators exhibit poor thermal stability and are flammable. This study investigates the use of green, environmentally friendly, and renewable bacterial cellulose as a substrate for developing a composite separator (BHM/5). The BHM/5 separator, comprising bacterial cellulose, an inorganic mineral nano-hydroxyapatite (HAP) and flame-retardant melamine polyphosphate (MPP), is fabricated via freeze drying and high-temperature pressing. The developed composite separator demonstrates superior thermal stability and excellent flame retardancy compared with commercial polyolefin separators while maintaining structural integrity at 200 °C and exhibiting self-extinguishing properties after ignition. Furthermore, the BHM/5 separator exhibits a high porosity of 74 % and a substantial electrolyte uptake of 459 %, achieving an ion conductivity of 1.44 mS/cm. As a result, the cell of the LiFePO-Li system assembled demonstrates an initial discharge capacity of 131.35 mAh·g at a current density of 1C and a capacity retention of 95.4 % after 150 cycles.

摘要

隔膜在提高锂离子电池(LIBs)安全性方面起着至关重要的作用;然而,商用聚烯烃隔膜热稳定性差且易燃。本研究探讨了使用绿色、环保且可再生的细菌纤维素作为基材来开发复合隔膜(BHM/5)。BHM/5隔膜由细菌纤维素、无机矿物纳米羟基磷灰石(HAP)和阻燃剂三聚氰胺聚磷酸盐(MPP)组成,通过冷冻干燥和高温压制制成。与商用聚烯烃隔膜相比,所开发的复合隔膜表现出卓越的热稳定性和出色的阻燃性,在200°C时保持结构完整性,着火后具有自熄性能。此外,BHM/5隔膜具有74%的高孔隙率和459%的高电解液吸收率,离子电导率达到1.44 mS/cm。因此,组装的LiFePO-Li体系电池在1C电流密度下的初始放电容量为131.35 mAh·g,150次循环后容量保持率为95.4%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验